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Automatically recognizing human activities in videos is
one of the core tasks in the field of computer vision.
Compared to the single-person activity recognition
task, group activity recognition requires a more robust
scheme that can capture correlated individual actions
in group activities.
Common existing	approaches:

Step 1. Identify individual person in video frames.
Step 2. Track and recognize individual actions.
Step 3. Infer group activities.

Biggest	weakness:
High computation time.

Our	Contributions:
1. We propose a novel solution, namely SBGAR, for

group activity recognition.
2. The proposed scheme is semantics-based. It can

generate a semantic representation for each video
frame.

3. Our solution yields better performance than state-
of-the-art approaches.
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In a Volleyball Game, given the following descriptions:
• Frame t-1: There is a player jumping on the right

side, while others are standing.
• Frame t: There is one player spiking on the right

side and three players blocking on the left side,
while others are standing.

• Frame t+1: All players are standing.
One	can	easily	infer:	Right	team	is	Spiking.

Intuition

Methods Accuracy (%) 
B1 - Single Frame Classification
B2 - Temporal Model with Image Features 
B3 - SBGAR (RGB Frame Only)
B4 - SBGAR (Optical Flow Image Only) 

67.2 
68.5 
83.7 
70.1 

Contextual Model [1] 
Deep Structured Model [2] 
Two-stage Hierarchical Model [3] 
Cardinality kernel [4] 

79.1 
80.6 
81.5 
83.4 

SBGAR (RGB & Optical Flow) 86.1 

Methods Accuracy (%) 
B1 - Single Frame Classification
B2 - Temporal Model with Image Features 
B3 - SBGAR (RGB Frame Only)
B4 - SBGAR (Optical Flow Image Only) 

41.9 
44.3 
38.7 
54.3 

Two-stage Hierarchical Model [3] 51.1 
SBGAR (RGB & Optical Flow) 66.9 

Process Computation Time (ms) 
Optical Flow Image
Extract CNN1 Feature (Inceptionv3) 
Extract CNN2 Feature (Inceptionv3) 

22.19 
27.78 
27.78 

Caption Generation 28.63 
Activity Recognition (10 Frames) 2.15 
In Total 108.53 
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