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Motivation

* Smart City typically involves large population participating in crowded
events e.g. watching baseball games, NFL games

* Law personnel may want to monitor the crowd to quickly identify some
suspicious behaviors

* Sport coaches may want to monitor a game and be alerted about game
highlights.
* Group activity recognition is important in above application scenarios

and hence having efficient schemes for identify group activity is critically
important.
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Existing Work

Existing approach in CVPR 2016 paper [7]:
1. Detect all players from each frame
2. Employ a LSTM for each player
3. Output a corresponding group activity label

Our Approach:
1. One LSTM to generate a sentence for each video frame. Generating
sentences for frames allows users to:
a. Search videos with similar content.
b. Search videos by typing some sentences.
2. Also generate a group activity label. Can also group video frames into
several sub-events of the same category e.g. spiking.
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[1] lbrahim, Moustafa, et al. "A Hierarchical Deep Temporal Model for Group Activity Recognition.” Computer Vision and Pattern Recognition. 2016
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Group Activity Recognition

Our Solution
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Group Activity Recognition

Caption Generation Model
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Group Activity Recognition

Activity Prediction Model
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Datasetl: VolleyBall

YouTube Volleyball (http://vml.cs.sfu.ca/wp-content/uploads/volleyballdataset/volleyball.zip):
4830 frames from 55 videos are annotated with 9 player action labels and 6 team activity labels.

Action Classes No. of Instances

Group Activity Class  No. of Instances Waiting 3601

Setting 1332
Right set 644 .

Digging 2333

Right spike 623 . 1241
Right pass 801 Spiking 1216
Left pass 826 Blocking 2458

Left spike 642 Jumping 341
Left set 633 Moving 5121
Standing 38696
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http://vml.cs.sfu.ca/wp-content/uploads/volleyballdataset/volleyball.zip)

Intermediate Results from Our Caption Generation Model

Left: standing waiting blocking Right: standing moving

Left: standing blocking Right: standing setting moving
waiting spiking
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Test Result using Volleyball Dataset

Result from [1] Our Result
Accuracy: 51.1% Accuracy:66.9%
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[1] Ibrahim, Moustafa, et al. "A Hierarchical Deep Temporal Model for Group Activity Recognition.” Computer Vision and Pattern Recognition. 2016
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Test Result using Volleyball Dataset

Methods Accuracy (%)
Two-stage Hierarchical Model [1] * 51.1
SBGAR (RGB Frame Only) 38.7
SBGAR (Optical Flow Image Only) 54.3
SBGAR (RGB & Optical Flow) 66.9
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Additional Test Results:

* Dataset: Collective Activity Dataset
*44 short video sequences
5 different collective activities :

* crossing
* walking

* waiting

* talking

* queueing
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Test Result using Collective Activity Dataset

Result from [1]
Accuracy: 81.5%

Our Result
Accuracy:86.1%

0.85 33.33 0.00 16.76 0.00 5.20 0.00

11.41 66.44 0.00 22.15 0.00 0.00 0.00

0.00 0.00 96.77 : 0.00 0.00 99.16

16.49 3.09 0.00 80.41 : 10.74 0.67

0.00 0.00 0.00 0.55 99.45 0.00 0.00

0.00 15.38 PRZAYA

talking walking queuing waiting crossing

crossing waiting queuing walking talking crossing waiting queuing walking talking

[1] Ibrahim, Moustafa, et al. "A Hierarchical Deep Temporal Model for Group Activity Recognition.” Computer Vision and Pattern Recognition. 2016




Test Result using Collective Activity Dataset

Methods Accuracy (%)
Contextual Model [2] * 79.1
Deep Structured Model [3] * 80.6
Two-stage Hierarchical Model [1] * 81.5
Cardinality kernel [4] * 83.4
SBGAR (RGB Frame Only) 83.7
SBGAR (Optical Flow Image Only) 70.1
SBGAR (RGB & Optical Flow) 86.1
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Test Result: Computation Time

Testing on a desktop:
CPU: Intel i7 6700K, 4.2GHz
Memory:16GB
Graphic: GTX 1080

Our Scheme (Based On Single Frame) Our Scheme (Based On 10 Frames)
T s | computationtme ()| ____process | computaton time (ms)

De-shake 2.42 De-shake 2.42 (* 10)
Optical Flow Image 19.77 Optical Flow Image 19.77 (* 10)
Extract CNN Feature (Inceptionv3) 27.78 Extract CNN Feature (Inceptionv3) 27.78 (* 10)
Caption generation 28.63 Caption generation 28.63 (* 10)

Activity Recognition 0.057 Activity Recognition(10 frames) 2.15

Total 78.657 Total 80.75

* The input size of Inception-v3 is (299*299*3). Thus, we first resize the image into (299*299*3) and then collect the computation time.
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