
UAV Assisted Smart Parking Solution

Xin Li
CSE Department
Lehigh University

xil915@lehigh.edu

Mooi Choo Chuah
CSE Department
Lehigh University

chuah@cse.lehigh.edu

Subhrajit Bhattacharya
Mechanical Engineering Department

Lehigh University
sub216@lehigh.edu

Abstract—Smart parking solutions for big cities are critically
important for reducing traffic congestion and vehicle energy
consumption in big cities. Visual-based detection methods have
been proposed since their maintenance costs are typically lower.
However, visual based detection methods in existing systems
are not robust due to varying light intensities, occlusions, and
their deployment costs can still be expensive. In this paper,
we present a collaborative UAV aided smart parking solution
where a small team of low cost UAVs are used to collaboratively
identify free parking spots of parking lots within campuses.
We design a novel navigation control scheme to allow such
UAVs to avoid obstacles and cover the parking lots sufficiently.
In addition, we also present a visual detection scheme using
the generative adversarial network (GAN) which allows us to
predict parking availability without requiring pre-identification
of parking spots. Simulation results indicate that our approach
show promising results.

I. INTRODUCTION

The advancement of microelectronics, wireless technolo-
gies has spurred the design and deployment of smart devices
which affect many aspects of our daily lives. For exam-
ple, smart watches can monitor their owners’ physiological
parameters; sensors monitoring air quality are deployed to
monitor the levels of pollutants in big cities [1]; embedded
devices in autonomous or semi-autonomous cars can rec-
ognize obstacles and apply the breaks to avoid accidents;
smart thermostats can monitor home owners’ preferences and
automatically set temperature for appropriate room comfort.
Smart devices have been deployed at a very fast rate due to
their low costs and ease of deployment.

Smart cities can greatly benefit from this growing tech-
nological trend [2], [3] especially in the area of transporta-
tion, healthcare management, surveillance and city planning.
Among these, parking management with smart technologies
have received some attention [4], [3], [5]. Finding empty
parking slot has become an everyday chore for many college
students in campuses as well as for drivers in big cities. The
conventional method of having drivers driving around the
parking lots or streets to find a free spot is inefficient, time
consuming and not environmental friendly. A study in 2007
[6] found that vehicles looking for parking over a year in a
small business district of Los Angeles created the equivalent
of 38 trips around the world, burning 47,0000 gallons of
gasoline and producing 730 tons of carbon dioxide.

One key factor contributing to such excessive vehicle
parking miles is a lack of real-time information about parking
availability. Not all parking lots (especially those outdoor
parking lots in campuses) have entry/exit counters installed
to help one figure out the parking availability. Even if

such counters are installed at the entrace/exit points in a
multi-storey parking garage, we still need to know exactly
which storey has empty parking spots. Different solutions
for a parking guidance (PG) system have been proposed.
One critical component of such a PG system is having the
right detector for collecting parking availability information
reliably and accurately and then present them in a user-
friendly manner to drivers. The right detector should correctly
report the parking availability information irrespective of
environmental changes, e.g., day or night time, cloudy or
sunny day, having different sizes of vehicles in the parking
spots. The cost of deploying and maintaining such detectors
in a PG system is also important. RFID based or ultrasound
sensor based solutions typically are expensive since sensors
need to be installed on each parking spot, and maintained.

Vision-based detectors are typically more cost efficient for
each visual node (typically a camera and a transmitter) can
monitor many vehicular spots simultaneously and the cost
of maintenance is low. However, the deployment cost can
still be high since cameras need to be installed and wireless
connectivity needs to be provided to feed the collected videos
to a remote server for image analysis. The reliability of a
camera-based visual detector system is affected by varying
light intensity, camera resolution and bad weather. Thus,
it is important that researchers research on vision-based
techniques that can improve the robustness of any visual
parking guidance systems.

In this paper, we consider deploying a small team of
low cost UAVs to perform visual inspection for parking
availability. Our collaborative UAV aided smart parking
solution utilizes one or a small team of UAVs equipped
with appropriate cameras to survey large areas of open-space
parking lots to determine parking availability with the help
of a remote server. We design an efficient navigation control
scheme to ensure that the team of UAVs can fly around
potential obstacles, e.g., trees, and be able to cover different
regions of a parking lot using their limited battery resources.
In addition, our smart parking system utilizes a new gener-
ative adversarial network (GAN) model for detecting vacant
and occupied parking spots. We show the robustness of our
detection system by evaluating its performance using a large
dataset of labeled parking spots. The evaluation results show
promising results for our approach.

The rest of the paper is organized as follows: In Section II,
we present some related work and background information
about how GAN works. In Section III, we describe our
system architecture and how our system works. In Section

IV, we describe our cooperative multi-UAV coverage control
scheme. In Section V, we present the visual-based experimen-
tal results we obtained using the PKlot dataset. We conclude
with discussions of near future work in Section VI.

II. BACKGROND & RELATED WORK

A. Smart Parking Solution

As stated earlier, some work has been done in recent years
to design smart parking solutions. Various parking vacancy
solutions have been suggested e.g. in pavement wireless
sensor networks [7], ultrasonic sensors [3], [8]. In [7], the
authors design a sensor unit consisting of a GPS receiver
and a passenger-side-facing ultrasonic rangefinder to iden-
tify urban street parking availability. Visual-based parking
solutions have also been proposed [9], [10]. A recent work
[11] has collected a large dataset of images from parking
lots and applied a learning algorithm for free parking spots
identification with acceptable results. In [12], the authors
apply deep convolutional neural network method to identify
parking vacancies. However, both papers assume that parking
spots have been pre-identified from video frames and all one
needs to do is to infer if there is a car in that parking spot.
However, a more flexibile solution is to use a vision-based
technique that can automatically identify parking spots and
determine their availabilities.

B. Background of GAN

To automatically identify parking spots, in this paper, we
use a Generative Adversarial Network (GAN) model recently
proposed in [13]. A GAN is trained to identify the parking
lots. The main idea behind a GAN is to have two competing
neural network models. One model, called the generator,
takes the original image as input and generates samples. The
other model, called the discriminator, taking samples from
the generator and the training data as its input and try to
distinguish between these two sources (refer to Figure 1).
During the training process, these two networks are trained
simultaneously, and the generator is learning to generate
more realistic samples while the discriminator is learning
to perform better in distinguishing generated sample from
training data.

We use the implementation of GAN released by Isola et al.
[13]. They adapt the generator and discriminator architectures
descripted in [14] in the following manners: 1. Typically, an
encoder-decoder network used for many information trans-
lation problems allows low-level information to be shared
between the input and output. Thus, it is desirable to shuttle
this information directly across the net. To achieve this, the
authors add skip connections following the general shape
of a “U-Net” [15] (refer to Figure 2). 2. They also design
a modified discriminator architecture, called patchGan, to
model high-frequencies structure. This discriminator tries to
classify if each N ⇥N patch in an image is real or fake.

C. Collaborative UAV navigation control

Multi-robot coverage control is a well-studied problem.
The traditional methods for attaining uniform coverage of an

Fig. 1: Architecture of training a GAN to predict parking lots
mask from original images. The discriminator, D, learns to
classify between real and synthesized pairs. The generator,
G, learns to fool the discriminator.

Fig. 2: Architecture of adapted generator. The “U-Net” is
an encoder-decoder with skip connection between mirrored
layers in the encoder and decoder stacks.

environment is the Lloyd’s algorithm [16] and its continuous-
time version due to Cortes [17]. While initially proposed
for convex subsets of Euclidean spaces, in recent years
significant advancements have been made to generalize the
algorithms to general metric spaces which are possibly non-
convex using graph search based methods [18], [19], [20].
Coverage control in the presence of dynamic weight functions
have also been recently studied [21]. In this paper, we apply
the fundamental graph-search based coverage control in on-
convex environments along with a switching controller to
make the UAVs visit different parking lots and attain visual
coverage of them.

III. PROPOSED ARCHITECTURE

In this section, we present an architecture to automatically
detect parking vacancies in outdoor parking lots. Specifically,
our scheme can detect the locations of parking spaces and
predict if each space is vacant or not. Figure 3 shows the
system architecture. Our scheme consists of three parts: 1.
Drone: One or more UAVs with a down-view camera will
fly over the parking lots to take pictures and send them back
to a remote server. 2. Server: The server is used to receive
pictures from the drone and automatically analyze parking
lots on images and store the analyzed results in a database.
The server is also responsible for controlling the navigations
of cooperative UAVs such that these UAVs provide sufficient
coverage of parking lots 3. Client: This is an app running on
a mobile device or a web browser. A user can submit his/her
requests to the server to query the database regarding where
the vacant parking spaces are right now. This architecture is
similar to the one proposed in [12] by Valipour et al. Instead
of using static cameras and assuming the locations of parking
spaces are marked, we use a drone to collect pictures from
parking lots which means the locations of parking lots are
changing from image to image and there is no way to mark
these locations manually. Thus, we employ a novel way to
detect the locations of parking lots and predict the status of
each parking space simultaneously.

Fig. 3: System architecture.

A. UAVs

One or more UAVs are flown over the parking lots to
collect images using their down-view cameras. After a UAV
takes a picture with a high resolution, e.g. 1080*720, it first
compresses the picture to a lower resolution, e.g. 256*256,
and then sends the picture to a remote server via a wireless
network. The image compression process runs fast and does
not consume much resources (power and memory) of the
computing unit within a UAV. Such image compression helps
to reduce the communication cost. Instead of sending all
frames, the UAV sends a frame to the server at a pre-designed
frequency, e.g. a frame per second. The reason is twofold: (1).
Usually, there is no large change in parking availability within
a few seconds. (2). Lowering the sending frequency helps to
save communication and power cost. In our system, the UAV
does not need to save any image. Any UAV with a down-
view (or front-view) camera and wireless communication
capability can be used in our system. In addition, considering
that the image will be compressed before sending to the
server, the resolution of the camera on the UAV can be low,
e.g., 256*256. As a result of these, we can use a normal and
cheap UAV.

B. Server

The server in our scheme has four responsibilities: (1)
UAV navigation control to ensure complete coverage of any
parking lot surveyed; (2) Receiving images from UAVs; (3)
Analyzing the images to locate the parking spaces and pre-
dicts their status (vacant or occupied); (3)Hosting a database
to store the image processing results and some related infor-
mation (time). (4) Providing an interface to receive queries
from users and sends the results back to the users.

• UAV navigation control: The server will communicate
with the deployed UAVs to provide navigation control
information such that the UAVs can collaboratively
capture images that cover the whole parking lot that
they are supposed to survey;

• Receiving images: A UAV is connected to the server
via WiFi or cellular data connectivity. The sever listens
to a specific port to receive the compressed images from
the UAVs. After receiving an image, the server passes
it to the image processing model to analyze the image.

• Image processing: We trained a GAN (Generative
Adversarial Network) model [13] to process the images.
The input of the model is a compressed image from the
drone with a resolution of 256*256 and the output of
the model is an RGB image (same resolution as the
input) which marks each parking space with different
colors based on their statuses (e.g. green color indicates
vacant while read color indicates occupied). Please refer
to Section III-D for more implementation details. After
analyzing, the server stores the status of each parking
space and its associated time in the database.

• Database: the server hosts a database to store the
parking spot availability information obtained from the
image analyzer module. In our scheme, we only store
some simple information, e.g. the status of each parking
lot and the last-update time, in the database. Considering
the older records are useless for users, we overwrite
the previous status of a parking space if its status has
changed.

• Web-service interface: This web-service interface pro-
vides a way for users to access the data stored in
the database. A user submits a query to the server
using the mobile or web app to check if there is any
vacant parking space and the corresponding location.
After receiving a query from the user, the web-service
searches among records in the database and sends the
results back to the user.

C. Client

The user client is a mobile device app or a web app. This
app provides a way for a user to submit a query to the server
to get the current status of the parking lots. After receiving
the response from the server, the app displays the results to
the user so that the user can easily know the location of those
vacant parking spots.

Fig. 4: Output samples of our model.

D. Implementation Details

In this subsection, we report the details of our system
implementation.

• UAV: A Parrot AR. Drone 2.0 with a 720p camera is
used. We use a Raspberry Pi 3 Model B to perform
image compression algorithm which is implemented
using Python programming language and Opencv library
[22]. The image is compressed from the resolution of
1280*720 to 256*256. The UAV is connected to the
server via a WiFi network.

• Server: We use a laptop with a 2.5GHz intel Core i7,
16GB Memory, and running MacOS Sierra as the server.
Image receiver: We implement a socket server using
Python programming language to listen and receive
images from any deployed UAV. Image analyzer: In our
system, a GAN model is trained to predict the parking
lots. The generated sample is a mask which indicates
the locations and labels of parking spaces. During our
training process, we feed the original images and their
corresponding ground truth to the model to train the
generator and discriminator. In order to avoid overfitting
and expand training data, we edit the training images
by reversing, translating, and zooming operations. Dur-
ing testing process, we only feed the original image
into our model and use the generator to generate the
sample (mask) for us without using the discriminator.
Web-service interface: The web-service interface is
implemented using PHP programming language and
published using the Apache Server.

• Client: We run an Android app on a Samsung Galaxy
S5 with 2GB RAM. A user can submit his query to the
sever and receive the response from the server using this

Android App. Figure 5 shows the screenshot of our user
interface.

Fig. 5: The detected result shown on mobile device.

IV. COOPERATIVE MULTI-UAV COVERAGE CONTROL

In order for the UAVs to effectively collect data on the
availability of the parking spots, they need to coordinate and
attain an uniform coverage of the parking lot(s) in a region
of interest. To this end we use a variant of the continuous-
time version of Lloyed’s algorithm [16] first proposed by
Cortes [17]. The algorithm, originally proposed for convex
subsets of the Euclidean plane, is based on minimization
of a coverage functional – a measure of how poorly an
environment is covered.

A. Background

Suppose n UAVs want to attain coverage of an environ-
ment, ⌦. The position of the kth UAV is represented by
pk 2 ⌦. One also defines a weight function, w : ⌦ ! (0, 1],
which indicate the importance of the different parts of

the environment – higher indicate greater importance. The
Voronoi Partition of the environment is then defined as

Vk = {q 2 ⌦ | kq� pkk kq� plk, 8l 6= k} (1)

Vk is thus he set of points that are closer to the kth UAV than
any other UAV in the environment. This in turn is used to
define the Coverage Functional

H(P) =
nX

k=1

Z

Vk

kq� pkk2 w(q) dq (2)

where P = {p1,p2, · · · ,pn} and dq is the differential
volume element.

The name “Coverage Functional” is indicative of the fact
that H measures how bad the coverage is — i.e., the more
well-distributed the UAVs are throughout the environment,
the lower is the value of H. This leads us to a control law
for the UAVs that would minimize H – i.e., to follow the
negative of the gradient of H. That is,

ṗk = �↵
@H
@pk

= 2Ak(pk � p⇤
k) (3)

where, Ak =
R
Vk

w(q) dq is the area of the Voronoi cell,
Vk, and p⇤

k = 1
Ak

R
Vk

q w(q) dq. Since the Voronoi cells, Vk,
depend on the positions of the UAVs, P , the last equality in
(3) requires the methods of differentiation under integration
to be derived [17], [23].

B. Discrete Graph-based Method for Non-convex Environ-
ments

p
1

p
2

p
3

Fig. 6: Voronoi partition of a non-convex subset of the
Euclidean plane with 3 UAVs computed using a discrete
graph search based wavefront algorithm.

The problem with the above control algorithm is that it
is valid only when ⌦ is a convex subset of an Euclidean
space. However, in [18] it was shown that it is possible to
extend this control algorithm to more general metric spaces
which are possibly non-convex with obstacles. The key to that
extension lies in observing that the 2-norm, k · k in (1) and
(2) needs to be replaced by the appropriate and more general

distance function d(·, ·) in a general (non-Euclidean and non-
convex) metric space ⌦. In particular, if ⌦ is a general non-
convex subset of an Euclidean space (more generally, a space
with isotropic Riemannian metric), and d(u,v) the geodestic
distance (length of shortest path) between points u,v 2 ⌦,
then the general control law reduces to

ṗk = �2↵

Z

Vk

d(q,pk) zqpk
w(q) dq (4)

where zqpk
is an unit tangent at pk to the geodesic (shortest

path) connecting pk and q.
Using graph search-based wavefront propagation method,

both the generalized Voronoi partition (Figure 6) and the
control law in (4) can be computed very efficiently for all the
UAVs [18] and hence the generalized coverage functional in
the non-convex space can be minimized to attain a centroidal
Voronoi tessellation. In addition, to ensure that the tessella-
tion boundary of the UAVs not just split area equally, but
split the total weights (weighted area) relatively equally, we
use a distance function, d, that is weighted by the w as well
(this results in a non-uniform, but isotropic metric). A graph
search based method allows us to implement such a distance
function simply by weighing the edges of the graph by w.
The details of the method can be found in [18], [20].

C. Weight Function and Metric for Parking Lot Coverage

(a) An environment with obstacles
(buildings and trees) and parking
lots.

(b) The weight function (indicated
by intensity of green) giving higher
priority to the parking lots.

Fig. 7: Illustration of the construction of the weight function
to prioritize parking lots.

The role of the weight function, w, is to prioritize parts
of the environment, ⌦, that need to be covered/surveyed
more than the other regions of the environment. In the
parking lot monitoring application, we thus exploit the weight
function to prioritize the regions of the accessible (obstacle-
free) environment that constitute the parking lot. In practice
it is possible to automate the identification of parking lots
in a map of the environment in terms of bounding boxes.
However, since the UAVs’ environment (location of parking
lots and obstacles) itself does not change, we manually
construct the bounding boxes for the parking lots, set high
(⇠ 1.0) weights for regions inside the bounding boxes (and

(a) Robots start at the bottom of the
environment at t = 0.

(b) t = 150. (c) t = 300. (d) t = 400 (convergence attained).

Fig. 8: Four UAVs (highlighted by white circle around them) attain coverage in an environment by following the coverage
functional minimizing control law of (4). The intensity of yellow indicates the weight function. The red curves indicate the
boundary of Voronoi cells at every iteration. At t = 0 the UAVs start at the bottom of the environment. By t = 400 the
UAVs have attained a centroidal Voronoi tessellation.

a low weight, ✏, for the other regions), and apply a Gaussian
blur to construct a smooth weight function (Figure 7).

UAVs starting at a base station and following the control
law (4) will navigate the environment avoiding obstacles,
attain coverage of the environment, while prioritizing the
high weight regions (parking lots). This is illustrated in the
simulation of Figure 8. Four UAVs start at the bottom of
an environment, and eventually attain coverage of the two
parking lots in the environment, with two UAVs stationed at
each parking lot.

D. Sequential Coverage of Multiple Parking Lots Using
Switching Controller

When there are multiple parking lots to be covered, and
not enough UAVs available to simultaneously cover all, we
use a switching controller. In each of the discrete state of the
controller, the UAVs are tasked with covering one parking lot
(the assignment being enforced by setting high weight over
the particular parking lot), and we switch from one parking
lot to another once centroidal coverage of the previous lot
is attained (i.e. convergence is reached). This also lets us
cycle between parking lots indefinitely in order to maintain
persistent coverage of the environment. For travel between
parking lots (the intermediate state between the switch from
one parking lot to another), in order to increase speed and
efficiency, the UAVs use shortest paths. The simulation in
Figure 9 shows two UAVs covering two parking lots in the
Lehigh university campus in a sequential manner.

V. VISION-BASED EXPERIMENTAL RESULTS

In this section, we report the experimental results of our
vision-based solution using a well known parking lot dataset,
namely PKLot dataset [11]. PKLot contains 12,417 images
with a resolution of 2180*720 captured from two different
parking lots in sunny, cloudy and rainy days. The first parking
lot has two cameras with opposite capture angles, namely
UFPR04 and UFPR05. The another parking lot is named
PUCPR. Each image of the dataset has a corresponding XML

file including the coordinates of all the parking spaces on this
image and their labels (occupied/vacant).

A. Training Data Generation

In order to generate the ground truth to train our model,
we read the coordinates and label of each parking space from
the XML files and mark its region on a black panel with
different colors, e.g. red color indicates the parking space
is occupied and green color indicates the parking space is
vacant (refer “Ground Truth” columns in Figure 4). During
our experiment, we found there are some images (images
in folder PUCPR/Sunny/2012-11-07, PUCPR/Sunny/2012-
11-06, and PUCPR/Sunny/2012-10-30) which are falsely
labeled, so we remove these images from the dataset. In
addition, considering that no all parking spaces on the images
in subset PUCPR are labeled, we use black masks to cover
those areas without any label. Eventually, we have 12,162
images in total and we use 50% images for training and
another 50% for testing (the same procedure of the authors
in [11]). Table I shows the details of our training and testing
sets.

B. Results

In order to evaluate the performance of our system, two
sets of experiments are conducted:

• Multiple parking lots training and testing: The model
is trained on multiple training subsets, and then tested
on all testing subsets.

• Multiple parking lots training and testing on rotated
images: To emulate the fact that images collected by
a UAV may have varying orientations, we create a
synthetic testing dataset by rotating the existing images
by a small angle (within 10 degrees). Then, we use a
trained model created using the existing training subset,
and test the model using test images rotated with some
random angles.

All reported results in this section are collected using a
trained model generated with 50 training epochs.

(a) Two parking lots near the Mohler lab in Lehigh
University campus (buildings in black, trees in dark
gray).

(b) Two UAVs fly towards the first parking lot after
starting at the upper right corner of the environ-
ment.

(c) They attain centroldal Voronoi coverage of first
parking lot.

(d) The UAVs fly towards the second parking lot. (e) And attain centroldal Voronoi coverage of that.

Fig. 9: Switching control for covering two parking lots using 2 UAVs. (a),(b): In the first state the UAVs attain overage of
the first lot since the weight id high on that lot. (c)-(d): In the second state the weight shifts to the other parking lot and
the UAVs attain coverage of that.

TABLE I: Training and testing sets

Training Sets Testing Sets

PUCPR
Sunny 1029 1032
Cloudy 664 664
Rainy 416 415
Total 2109 2111

UFPR04
Sunny 1050 1048
Cloudy 704 704
Rainy 143 142
Total 1897 1894

UFPR05
Sunny 1250 1250
Cloudy 713 713
Rainy 113 113
Total 2076 2076

In total 6082 6081

1. Multiple parking lots training and testing
In Table II, we report the precision of our model trained

using the combined three training subsets, and tested indi-
vidually using each test subset. It is obvious that our model
generates a good result in different viewpoints and weather
conditions. From this result, we notice that the accuracy of
predicting a spot is occupied is higher than predicting a spot
is vacant. The reason is that a vacant parking space has
similar feature or texture as the ground and hence harder
to distinguish, while an occupied parking space is different
from the ground. Figure 4 shows some samples of the output
of our model. In each row, we show an input image taken

either during a cloudy day or a sunny day from each subset
of the PKLot images (1st row input images are from PUCPR
subset, 2nd row and 3rd row are from UFPR04 and UFPR05
respectively), what ground truth parking availability looks
like for each input image, and what our predicted output
shows.

TABLE II: Precision of training on all 3 training subsets

Trained on all 3 subsets
Occupied Vacant Overall

Tested on (50 epochs)
UFPR04 98.21% 97.50% 97.81%
UFPR05 99.1% 98.0% 98.6%
PUCPR 60.4% 71.9% 67.0%
Overall 77.4% 80.7% 79.2%

Tested on (200 epochs)
UFPR04 98.3% 96.8% 97.5%
UFPR05 96.8% 93.8% 95.6%
PUCPR 94.5% 94.9% 94.7%
Overall 95.7% 95.0% 95.3%

2. Multiple parking lots training and testing on rotated
images In this experiment, we rotated the testing images by a
random angle (within a range of (-10, 10)). Table III shows
the precision of our trained model for this task. From the
result, we see that the model maintains a high precision on
the UFPR04 and UFPR05 testing subsets, but performs worse
on the PUCPR testing subset. The reason is twofold: (1) the
parking spaces on the images of the PUCPR subset are not
very clear compared to the other two subsets, (2) the trained
model is more sensitive to the orientation changes of the
rotated PUCPR test images because the parking spots within
the PUCPR images are packed more closely. To rectify such
problem, we will design the navigation control of our UAVs

such that they take images at a closer range as long as their
flight paths are not hampered by obstacles.

TABLE III: Precision of training on multiple parking lots training
and testing on rotated images

Trained on all 3 subsets
Occupied Vacant Overall

Tested on
UFPR04 93.0% 87.0% 89.6%
UFPR05 94.6% 93.2% 94.0%
PUCPR 39.7% 66.2% 56.0%

VI. CONCLUSION

In this paper, we proposed a UAV-assisted architecture to
detect the status (occupied/vacant) of parking spaces in park-
ing lots. We use a novel generative model, GAN (Generative
Adversarial Network), to automatically detect the locations
of parking spaces and predict their occupancy states. The
performance of our vision-based scheme is evaluated using a
well known PKLot dataset. The result shows that our scheme
achieves a high detection and prediction result. In addition,
we also propose a novel algorithm to control the navigation of
these UAVs so that they can collaboratively cover the whole
parking lot using limited battery resources that they have and
also avoid obstacles such as trees, occlusions while flying. In
the near future, we hope to investigate the robustness of our
design using more challenging parking lot and side street
parking images that contain obstacles e.g. trees, occlusions
along the flight paths of collaborative UAVs.

REFERENCES

[1] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li,
“Forecasting fine-grained air quaity based on big data,” Proceedings
of ACM KDD, 2015.

[2] A. Zannella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of things for smart cities,” IEEE Internet of Things Journal,
2014.

[3] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrashekharan, W. Xue,
M. Gruteser, and W. Trappe, “Parknet: Drive-by sensing of road-side
parking statistics,” Proceedings of ACM MobySys, 2010.

[4] R. Lu, X. Lin, H. Zhu, and X. S. Shen, “Spark: A new vanet-based
smart parking scheme for large parking lots,” Proceedings of IEEE
INFOCOM, 2009.

[5] Y. Geng and C. Cassandras, “New smart parking system based on
resource allocation and reservations,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, pp. 1129–1139, 2013.

[6] D. Shoup, “Cruising for parking,” Access, vol. 30, pp. 16–22, 2007.
[7] R. Bajwa, R. Rajagopoal, P. Varaiya, and R. Kavaler, “In-pavement

wireless sensor network for vehicle classification,” Proceedings of
ACM Information Processing in Sensor Neworks (IPSN), 2011.

[8] A. Kianpisheh, N. Mustaffa, P. Limtrairut, and P. Keikhosrokiani,
“Smart parking system architecture using ultrasonic sensors,” Inter-
national Journal of Software Engineering and Its Applciations, 2012.

[9] C. C. Huang and S. J. Wang, “A hierarchical bayesian generation
framework for vacant parking space detection,” IEEE Transactions on
Circuits and Systems For Video Technolog, 2010.

[10] H. Ichihashi, T. Katada, M. Fuijiyoshi, A. Notsu, and K. Honda,
“Improvement in the performance of camera based vehicle detection
for parking lot,” IEEE International Conference on Fuzzy Systems
(FUZZ), 2010.

[11] P. R. De Almeida, L. S. Oliveira, A. S. Britto, E. J. Silva, and A. L.
Koerich, “Pklot–a robust dataset for parking lot classification,” Expert
Systems with Applications, vol. 42, no. 11, pp. 4937–4949, 2015.

[12] S. Valipour, M. Siam, E. Stroulia, and M. Jagersand, “Parking stall va-
cancy indicator system based on deep convolutional neural networks,”
arXiv preprint arXiv:1606.09367, 2016.

[13] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” arXiv preprint
arXiv:1611.07004, 2016.

[14] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv preprint arXiv:1511.06434, 2015.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Confer-
ence on Medical Image Computing and Computer-Assisted Interven-
tion. Springer, 2015, pp. 234–241.

[16] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform.
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[17] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, Apr. 2004.

[18] S. Bhattacharya, R. Ghrist, and V. Kumar, “Multi-robot coverage and
exploration on riemannian manifolds with boundary,” International
Journal of Robotics Research, vol. 33, no. 1, pp. 113–137, January
2014, dOI: 10.1177/0278364913507324.

[19] J. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete partitioning and
coverage control for gossiping robots,” IEEE Transactions on Robotics,
vol. 28, no. 2, pp. 364–378, 2012.

[20] S. Bhattacharya, N. Michael, and V. Kumar, “Distributed coverage and
exploration in unknown non-convex environments,” in Proceedings of
10th International Symposium on Distributed Autonomous Robotics
Systems. Springer, 1-3 Nov 2010.

[21] J. M. Palacios-Gass, E. Montijano, C. Sags, and S. Llorente, “Dis-
tributed coverage estimation and control for multirobot persistent
tasks,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1444–1460,
Dec 2016.

[22] The OpenCV Reference Manual, 2nd ed., Itseez, April 2014.
[23] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira,

“Sensing and coverage for a network of heterogeneous robots,” in Proc.
of the IEEE Conf. on Decision and Control, Cancun, Mexico, Dec.
2008, pp. 3947–3952.

