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Abstract—Image retrieval has become an important function in
many emerging computer vision applications e.g. online shopping
via images, medical health care systems. More and more images
are being generated and stored in public clouds. However, recent
photo leakage events raise concerns about privacy leaks for im-
ages stored in public clouds. In this paper, we present an efficient
scalable hierarchical image retrieval system (CASHEIRS) which
provides privacy-aware image retrieval feature. CASHEIRS em-
ploys transformed Convolutional Neural Network features to
improve image retrieval accuracy and an encrypted hierarchical
index tree to speed up the query process. Extensive evalua-
tions using Caltech256 and INRIA Holiday datasets show that
CASHEIRS is more effective than three existing schemes. We
also demonstrate its practicality on a mobile device.

Index Terms—Hierarchical image retrieval, Convolutional
Neural Network, image privacy

I. INTRODUCTION
Image retrieval techniques have been used in many com-

puter vision related applications. For example, Fischer et al.
[1] employ image retrieval techniques for disease detection and
diagnosis, Liu et al. [2] design a scheme to help customers
search similar clothes online, etc. With the proliferation of
powerful mobile devices, more images are being generated and
large image datasets are often outsourced to the public cloud.
To support image retrieval over large dataset, one needs to
compare query image features with the features of all stored
images in a database. Existing image retrieval schemes may
yield low accuracy and incur large image retrieval response
time if such schemes have to go through all stored images.

To combat lower image retrieval accuracy with larger image
dataset, Deng et al. [3] propose a hierarchical-index-tree-
based method to improve retrieval accuracy. They compute an
attribute vector for each image that represents the probabilities
that this image belongs to certain image categories. A simi-
larity matrix that captures the relationship between different
categories is used to compute similarity between the attribute
vector of a query image and a stored image in the database.
However, this approach is not scalable as the size of the
attribute vector increases with increasing number of categories.
In addition, it is expensive to do incremental learning as the
number of categories changes since the attribute vectors of all
training images need to be recomputed.

Apart from dealing with large image dataset, another is-
sue that data owners face when outsourcing their datasets
to the public cloud is that many images contain sensitive
information e.g. MRI(Magnetic Resonance Imaging) images.
Thus, directly outsourcing such images to pubic cloud raises
privacy concern. In [4], Yuan et al. present a lightweight
secure image search scheme over encrypted data. They employ
K-Means clustering algorithm to build a hierarchical index
tree. However, K-Means algorithm does not always yield
satisfactory results. For example, K-Means algorithm may
assign few images into one group, while assigning many

images into another group. This will in turn results in an index
tree with many levels, which yields large query response time.

In this paper, we propose an efficient and secure image
retrieval system called CASHEIRS which addresses the lim-
itations of existing privacy-aware large scale image retrieval
schemes. Our CASHEIRS has four key features, namely: (i)
Scalability: our CASHEIRS constructs a hierarchical index
tree which groups similar clusters into a higher-level cluster
and allows efficient search over subsets of categories rather
than whole set during a query process. (ii) High accuracy:
Convolutional Neural Network(CNN) features are used to
improve image retrieval accuracy. (iii) Efficient storage and
communication cost: High dimensional CNN image features
are transformed into short binary codes to reduce storage and
communication cost. (iv) Privacy-aware: an efficient encryp-
tion method is proposed to protect sensitive information of
stored images and query privacy during a search process.
We evaluate our design and demonstrate its practicality on
a mobile device.

The rest of this paper is organized as follows. In Section
II, we briefly discuss related work. Section III describes the
system and threat models, and some important building blocks
for our solution. In Section IV, we describe our proposed
image retrieval system, followed by the security analysis in
Section V. We report our experimental results in Section
VI and describe the implementation details of our prototype
system in Section VII. Finally, we conclude this paper in
Section VIII.

II. RELATED WORK
In recent years, much result has been done to efficiently and

accurately recognize an object from a dataset. For example,
Lowe et al. [5] propose Scale Invariant Feature Transform
(SIFT) which provides strong discriminative features to de-
scribe several salient patches around keypoints in an image.
In [6], Sivic and Zisserman propose a bag of words(BoW)
scheme, which has been widely used in the task of object
recognition [7] and image retrieval [8]. In Chechik et al. [9],
the authors propose a fast online algorithm for scalable image
similarity learning. However, all these papers focus on image
feature representation or image retrieval without considering
search privacy. In order to deal with the privacy issue, Lu
et al. [10] and Hsu et al. [11] propose privacy preserving
image search schemes over encrypted multimedia data set.
The authors in [10] propose using order preserving encryption
and Min-Hash to provide privacy-preserving feature but their
scheme only works if visual words are used to represent
images and researchers have shown that Fisher vector based
image search algorithms provide 20% higher accuracy [4].
Similarly, the authors in [11] use encrypted SIFT features
which may be larger than the compressed images and hence
their method incurs large storage and communication cost.



Fig. 1: System Model
III. PROBLEM FORMULATION

A. System Model
Figure 1 illustrates a cloud-based image storage and retrieval

system which allows data owners to securely outsource their
images and authorized users to submit privacy-aware image-
based queries. The system model consists of three entities:
data owner, data user, and cloud server. A data owner first
generates an encrypted searchable index tree for his images
and encrypts all his images. Then, he outsources this large
collection of encrypted images, together with the constructed
encrypted searchable index tree to the cloud server. Next, he
distributes query generation key and data decryption key to
authorized users. Any authorized data user may create an
encrypted query using the generation key, and then send it to
the cloud server. After receiving the encrypted query, the cloud
server will perform the search over the encrypted data and send
back the top k ranked results to the data user. Finally, the data
user uses the data decryption key to obtain the information.

B. Threat Model
In the system model, we assume that the cloud server is

“honest-but-curious”, i.e., the cloud server will honestly follow
the protocol execution, but curiosity propels it to analyze
the data and searchable index tree to gain more information.
Depending on the available information to the cloud server,
two threat models as described in [12] [13] are considered.

1. Known Ciphertext Model: The encrypted image set,
searchable index tree and encrypted queries are all available
to the cloud server.

2. Known Background Model: In addition to the available
information assumed in the former model, the cloud server
can also use statistical information to deduce specific contents
in a query. It can even collude with other attackers to derive
additional information from the encrypted data.

C. Design Goals
To address the security and threat models we have presented

earlier, we design a secure hierarchical encrypted image re-
trieval system (CASHEIRS), which allows authorized users to
conduct privacy-aware searches for similar images efficiently.
CASHEIRS is designed with the following goals in mind:

1. Search Efficiency & Accuracy: The system should
achieve high search efficiency and accuracy, i.e., it should
return mostly correct answers with small search time.

2. Privacy Guarantee: The system should provide index
confidentiality such that the cloud server cannot learn any
useful information from stored data and encrypted index. Our
system should also provide query privacy and unlinkability.
Queries should be encrypted such that the same queries look

different each time they are submitted so that the cloud server
cannot deduce any sensitive information.

3. Scalability: The system should be scalable when dealing
with large-scale datasets.

4. Extensibility: A desirable design should support efficient
incremental update as the image dataset changes.

D. Important Building Blocks
Before we present the detailed description of our newly

designed system, we first give a few definitions.
1. Image Feature Extraction Via CNN: Convolutional Neural

Networks(CNNs) are biologically-inspired variants of multi-
layer perceptrons(MLPs). Recently, with the availability of
efficient GPU computing, researchers can train larger CNN-
based networks, which allows CNNs to be widely used in
solving several tasks such as image recognition [14]. In [15],
Nagi et al. claim that CNNs are efficient at learning invariant
features from images and can achieve higher accuracy by
using SVM to train a classification model. In addition, Fischer
et al. [16] have proved that the features from the last layer
of a conventional deep network trained on ImageNet can
outperform SIFT.

2. Iterative Quantization: To reduce the storage and commu-
nication cost, we use the Iterative Quantization (ITQ) scheme
proposed in [17] to transform a high dimensional CNN feature
into a short similarity-preserving binary code. The core idea is
to find a rotation of zero-centered data so that the quantization
error of mapping such data into the vertices of a zero-centered
binary hypercube is minimized. Principal component analysis
(PCA) is used to first reduce the dimensionality of data before
using ITQ. The experimental results in [17] show that PCA-
ITQ achieves a better performance than other state-of-the-art
quantization methods, e.g., LSH [18], Spectral Hashing [19].

3. Secure Hamming Distance Computation
Here, we describe how the cloud server can compute the

Hamming distance between two n-bit binary vectors (RV1,
RV2) securely using their encrypted vectors:

(i) We first convert RV1 and RV2 to RV ′1 and RV ′2 by
replacing all 0 values in these two vectors with -1.

(ii) Then, we select a n-bit binary vector S to split RV ′1 and
RV ′2 into (RV ′11, RV

′
12) and (RV ′21, RV

′
22) as follows[13]:

• If the ith bit of S is 0, then we split RV ′1 [i] into RV ′11[i]
and RV ′12[i] such that RV ′11[i] + RV ′12[i] = RV ′1 [i];
However, we set RV ′21[i] = RV ′22[i] = RV ′2 [i].

• If the ith bit of S is 1, then we set RV ′11[i] = RV ′12[i]
= RV ′1 [i]; However, we split RV ′2 [i] into RV ′21[i] and
RV ′22[i] such that RV ′21[i] + RV ′22[i] = RV ′2 [i].

(iii) Next, we generate two (n × n) invertible random
matrices M1 and M2 and compute the encrypted vectors
for RV ′1 and RV ′2 : Enc(RV ′1) and Enc(RV ′2). Then, the
Hamming distance between RV ′1 and RV ′2 is computed as the
inner product of these two encrypted vectors:

Enc(RV ′1 ) · Enc(RV ′2 )
= {MT

1 RV ′11,M
T
2 RV ′12} · {M−1

1 RV ′21,M
−1
2 RV ′22}

= RV ′11 ·RV ′21 +RV ′12 ·RV ′22 = RV ′1 ·RV ′2

(1)

(iv) Finally, the Hamming distance of RV1 and RV2 is
computed as D(RV1, RV2) =

n−RV ′1 ·RV ′2
2 .



IV. SECURE IMAGE RETRIEVAL SCHEME
We first present the basic operations of CASHEIRS before

we delve into its security related design details.
A. Image feature extraction

We use a pre-trained CNN model as an image feature
extractor by removing the last output layer of a typical CNN.
We extract a 4096-dimensional feature vector from each image
using Caffe [20], a deep learning framework which implements
CNN proposed by Krizhevsky in [21]. Since Caffe takes
images of a fixed size as input, we convert each image from
the datasets we use into one with 227*227 pixels since these
images have higher resolution. Even if it does not, one can
easily increase its resolution to 227*227 pixels. In addition,
we normalize image intensities to the [0, 255] range. Next, we
employ PCA-ITQ [17] to convert the extracted CNN image
features into short similarity-preserving binary codes.
B. Representative vector generation

In CASHEIRS, we build a hierarchical index tree which
groups images into different categories at various index-tree
levels. To allow efficient computation of distance between two
categories of images, we design a Representative Vector (RV)
which captures the major features of a category of images.
Each category RV has the same length as the binary codes of
images and is computed using the binary codes extracted from
M chosen images of a category using the PCA-ITQ method.
The distance between two categories can be computed by
performing an exclusive OR operation between two RVs.

Figure 2 shows how we compute a RV for a category
of images. First, we randomly choose M=40 images from
one category and generate the binary code vectors of these
M images. Then, we compute the average value in each
dimension of these binary code vectors to create a mean
vector. If the average value of a particular bit position in this
mean vector is larger than a pre-defined threshold, ThRV (e.g.
ThRV = 0.8 means more than 80% image features of this
category have 1s at the current position), then we assign the
corresponding bit of the category RV to 1, otherwise 0. Our
experimental results show that setting ThRV = 0.8 yields the
best results. Setting ThRV to a lower or higher value results
in a RV with either too many “1” (lower value) or “0” (higher
value) bits which is not representative of the binary codes of
images in that cluster.

In the next subsection, we discuss how to automatically
build a hierarchical index tree for categories of images based
on their representative vectors.
C. Hierarchical index tree building

First, we want to build a hierarchical index tree in which
similar images are grouped into a cluster and similar clus-
ters are grouped into a higher level cluster, so that we can
efficiently search only subsets of clusters within the index
tree given any query image. Hierarchical Clustering Algorithm

Fig. 2: Category Representative Vector Generation

proposed by Johnson in [22] can be used to build a hierarchical
tree quickly. This algorithm starts by assigning each item to
its own cluster. Then, it iteratively chooses and merges the
closest pair of clusters into one cluster until all clusters are
merged into one cluster. However, such method only generates
a binary tree with many levels. In addition, we may want to
group several similar image categories into one cluster and
hence a binary tree is not a good choice.

To overcome this problem, we adapt the original Hier-
archical Clustering Algorithm. Before describing our mod-
ified algorithm, let us first introduce our notation. We use
Ch,i = {RVh,i, Eh,i, INDh,i} to denote a cluster, where h
is the level that the cluster belongs to, and i is its index
at level h. Each cluster Ch,i contains three attribute values:
(1) a representative vector of the current cluster, denoted
as RVh,i, (2) a set of child nodes of the current cluster,
denoted as Eh,i = {e1, e2, · · · , e|Eh,i|}, and (3) INDh,i is
the maximum distance among pairs of clusters within Eh,i.
We define the distance between two clusters Cx,y and Cs,t as

D(Cx,y, Cs,t) =
n bits∑
i=1

(RVx,y
⊕
RVs,t)i, where n bits is the

number of bits in a representative vector. IND0,i for every
leaf node i is set to 0.

As in the original Hierarchical Clustering Algorithm, we
also build our index tree iteratively. The pseudo-code for
building the index tree is presented in Algorithm 1. DM in
Algorithm 1 captures the dissimilarity between the distance
of two RVs and the maximum pairwise distance between
images of these two clusters. Tht is a predefined threshold
used to determine if we want to merge two clusters together.
Experimental results show that setting Tht = 0.5 yields the
best results. Setting it too high prevents similar clusters from
being merged and hence reduces the query accuracy rate.

Figure 3 shows an example of the index tree construction.
First, we cluster all images into k=6 groups using the K-Means
algorithm. Each group corresponds to a leaf node at level 0 in
Figure 3(a). Thus, C set = {C0,1, C0,2, . . . , C0,6}.

Then, as shown in Figure 3(a) level 1, we compute the
distances of all pairs of these 6 clusters and choose the closest
pair, e.g. cluster C0,1 and C0,2. Because IND0,1 = IND0,2 =
0, so we merge cluster C0,1 and C0,2 into a new cluster
C1,1. Similarly, we merge cluster C0,4 and C0,5 into a new
cluster C1,2. Next, let us assume that the closest cluster pair
is C1,1 and C0,3, and D(C1,1, C0,3) = 9. Thus, DM =
|D(C1,1,C0,3)−max(IND1,1,IND0,3)|

max(IND1,1,IND0,3)
= 9−2

2 = 3.5 > 0.5(Tht),
so we merge cluster C1,1 and C0,3 into a new cluster C2,1

(Figure 3(b) level 2). After that, let us assume that the closest
two clusters are cluster C1,2 and C0,6 and their distance is 12.
Thus, DM =

|D(C1,2,C0,6)−max(IND1,2,IND0,6)|
max(IND1,2,IND0,6)

= 12−10
10 =

0.2 < Tht, so we merge cluster C0,6 into cluster C1,2 (Figure
3(b) level 1). We repeat this process to merge clusters until
all clusters are merged into one cluster (Figure 3(b) level 3).
D. Search Process Without Encryption

To find similar images using the hierarchical index tree,
the cloud server, upon receiving a search request, needs to
determine which nodes to visit next as it traverses from the
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Fig. 3: Hiererchical Index Tree Building

Algorithm 1: Building Index Tree

Input : A set of images: IMG set = {i1, i2, · · · , iN}, number of
centers for K-Means: k, predesigned threshold: Tht

Output: Index Tree TR. Each node j within TR has a node identifier
NI(j) = (h, i) where h represents its height, and i is its
index at height h within TR.

1 begin
2 TR← ∅
3 CNN set← Extract CNN feature(IMG set)
4 BinFeatures← PCA ITQ(CNN set)
5 C set← KMeans(BinFeatures, k) /*C set = {C0,1 · · ·C0,k}*/

6 Insert(TR,C set) /* insert leaf nodes into TR*/

7 while len(C set) > 1 do
8 /*find nearest(C set) returns 2 clusters (Cu,Cv) that have the smallest cluster

distance, where Cu = Ch1,i1 , Cv = Ch2,i2 and either (h1 > h2) or

(h1 == h2, i1 > i2)*/

9 Cu, Cv ← find nearest(C set)
10 if Cu.IND == 0 and Cv.IND == 0 then
11 C set← merge(TR,C set, Cu, Cv, True)

12 else
13 max value← max(Cu.IND,Cv.IND)
14 Dis← D(Cu, Cv)
15 DM ← (Dis−max value)/max value
16 if DM > Tht then
17 C set← merge(TR,C set, Cu, Cv, True)

18 else
19 C set← merge(TR,C set, Cu, Cv, False)

20 return TR

21 function merge(TR,C set, C x,C y, flag)
22 begin
23 if flag then
24 Cnewc = (RVnewc , Enewc , INDnewc ) =

CreateNode(Cx, Cy) /* this function computes node identifier

(hnew, inew), and RV of newc , set Enewc = x, y*/

25 Insert(TR,Cnewc ) /* insert newc into TR*/

26 C set.append(Cnewc )
27 remove C x, C y from C set

28 else
29 C x.append(C y) /*updates C x = [RVx,Ex, INDx] after including

Cy as an additional child nodes */

30 remove C y from C set

31 return C set

top to the leaf level of the tree. To help make this decision,
we define a weight metric for each node i (denoted as
Nol)(assume that there are Nh nodes in level h of the index
tree):

Nol(D(RVh,i), Q) = 1− D(RVh,i,Q)∑Nh
j=1 D(RVh,j ,Q))

(2)

The cloud server orders the weight metrics of all children
nodes (from the largest to the smallest) and selects a sufficient
number of nodes such that the sum of their weight metrics
exceeds Ths. Most of the time, only one node with the largest
weight metric (DMax(h)) will be selected but sometimes two
or more nodes are selected. All the selected nodes are consid-
ered matched nodes at level h. Experimental evaluations show
that the mean average precision (mAP) becomes stable after

Ths = 0.8 but the search latency increases with increasing
Ths since higher Ths yields more matching categories. Thus,
we set Ths = 0.8 since it achieves the best mAP and decent
search latency (6ms for 100 categories). After finding the
matched nodes, the cloud server will iteratively go through
those nodes until it finds the matched leaf node. The cloud
server then ranks the stored images in this matched leaf node
based on their Hamming distances and returns the top k images
(smallest distance first) to the data user.

E. Security Design in CASHEIRS
To keep his information private, a data owner encrypts all

his images and the image features stored in the hierarchi-
cal index tree before he outsources this information to the
cloud. Furthermore, CASHEIRS provides query unlinkability
to prevent the cloud server from tracking queries from a data
user. The security design for the query in CASHEIRs (similar
to the one in [4]) mainly splits an image vector into two
random vectors and encrypts them such that a query with the
same image looks different every time it is submitted. The
representative vectors stored in the hierarchical index tree are
also stored as split encrypted representative vectors such that
the Hamming distance between the encrypted image vector of
a query and any stored encrypted representative vector can be
securely computed. Next, we present a detailed description of
the security design we have in CASHEIRS.

1. KeyGen: In the initialization phase, a secret key SK is
produced by the data owner which consists of two components:
(i) a n-bit randomly generated splitting vector S; and (ii) two
(n × n) vectors {M1, M2}, Thus, SK can be denoted as a
3-tuple {S, M1, M2}. The data owner later sends the secret
key, SK, to the authorized users.

2. GenIndex(I ,SK): To speed up the image search process,
the data owner will build an index tree for all images.

(i) For each image f stored in the dataset, the data owner
first generates a n-dimensional image vector Vf based on the
pre-trained CNN model and PCA-ITQ.

(ii) Then, the data owner maps all images into N selected
clusters and computes the n-dimensional representative vector
for each cluster based on the image vectors.

(iii) Next, the data owner builds the hierarchical tree using
the procedures describe earlier. The owner first sets each
cluster as one leaf node of the index tree and then associates
both the n-dimensional representative vector RVh,i and image
IDs to every leaf node, where h is the node’s height and i is
its index at height-h.



(a) Query Process Without Encryption (b) Query Process With Encryption
Fig. 4: Query Process

(iv) In addition, the owner also assigns a n-dimensional
representation vector to each non-leaf node.

(v) In order to achieve privacy, the data owner later trans-
forms each representative vector RVh,i into an encrypted value
using the following substeps: first, the data owner simply
converts RVh,i to R̃Vh,i, such that all 0s in RVh,i are converted
into -1s in R̃Vh,i. In addition, the data owner splits R̃Vh,i into
two random vectors as {R̃Vh,i

′
,R̃Vh,i

′′
} based on the splitting

vector S, such that if the jth bit of S is 1, R̃Vh,i
′
[j] and

R̃Vh,i
′′
[j] are set as the same as R̃Vh,i[j]; but if the jth bit of

S is 0, R̃Vh,i
′
[j] and R̃Vh,i

′′
[j] are set to two random numbers

so that their sum is equal to R̃Vh,i[j]. Thus, the original RVh,i
is stored as two encrypted values.

(vi) Finally, the data owner constructs the encrypted index
tree EncSK(I) with each encrypted representative vector
stored as {MT

1 R̃Vh,i
′
,MT

2 R̃Vh,i
′′
}.

3. GenQuery(Q,SK): To provide query unlinkability, we
need to generate a different search request even with the same
query content.

(i) To perform an encrypted image search, a data user first
extracts the CNN feature from a query image, and converts it
into a binary code using PCA-ITQ as Q ={q1, q2, · · · }. Then,
he generates Q̃ by converting all the 0s in Q to -1s.

(ii) Next, the data user splits Q̃ into two random vectors as
{Q̃′, Q̃′′} using the splitting vector S and a similar splitting
procedure described in GenIndex. The difference is that if
the ith bit of S is 1, Q̃′[i] and Q̃′′[i] are set to two random
numbers so that their sum is equal to Q̃[i]; if the ith bit of S
is 0, Q̃′[i] and Q̃′′[i] are set as the same as Q̃[i].

(iii) In addition, the data user computes M−11 and M−12 .
Then, he generates the encrypted search request {M−11 Q̃′,
M−12 Q̃′′} and submits it to the cloud server.

4. Search(EncSK(I),EncSK(Q)): The search process with
encryption is shown in Figure 4(b). It can be compared to the
one without encryption (shown in Figure4(a)).

(i) After receiving a search request, the cloud server
searches through the index tree from the top to the leaf level.

(ii) At each level h, the cloud server finds the nodes of the
next level to traverse by comparing the Hamming distance of
the stored encrypted vector in node i at level h with that of
the query, D(EncSK(Ih,i), EncSK(Q)).

(iii) Then, the cloud server computes a weight metric for
each node i (denoted as Nol)(assume there are Nh nodes in

level h of the index tree):
Nol(D(EncSK(Ih,i), EncSK(Q)))

= 1− D(EncSK(Ih,i),EncSK(Q))∑Nh
j=1 D(EncSK(Ih,j),EncSK(Q)))

(3)

Next, it selects enough nodes such that the sum of their weight
metrics exceeds a predefined threshold, Ths. All these selected
nodes are then marked as the matched nodes at level h.

(iv) After finding the matched nodes, the cloud server will
iteratively go through those nodes until it finds the matched
leaf node. Finally, the cloud server returns the ranked images
stored at the matched leaf node to the data user.
F. Index Tree Update

In CASHEIRS, we consider two updating operation: adding
and deleting an image. When the data owner needs to add
an image, he first performs a Searching operation to find
the corresponding leaf node and inserts the feature of the
new image into this leaf node. Then, Category Representative
Vectors (RVs) of all non-leaf nodes on the path from this leaf
node to the root node will be updated. Similarly, to remove an
image, the data owner first performs a Searching operation to
find the corresponding leaf node and delete its feature followed
by updating all related non-leaf nodes.

V. SECURITY ANALYSIS
In this section, we will show how our security design

satisfies several search privacy requirements:
1. Index and Query confidentiality in both the known

ciphertext model and the known background model. More
details are provided in subsequent subsections.

2. Query unlinkability: the adopted vector encryption
method provides non-deterministic encryption via the ran-
domly vector splitting procedure. Thus, our schemes can create
different search requests even with the same query and hence
provide query unlinkability to a certain extent.

A. Security Analysis Under the Known Ciphertext Model
Here, we adapt the simulation-based security model in Sun

et al. [13] and Wang et al.[23] to prove that our basic scheme
can be secure under the known ciphertext attack. Before
proving, we will introduce some notations that will be used
in the proving process.
• History: it is an image collection F , an index set I and

a set of queries Q = {Q1,Q2,...} submitted by users, denoted
as H=(F , I , Q).
• View: the cloud server can only see the encrypted form

of a H , denoted as V I(H), including the secure indexes



EncSK(I), the encrypted images EncSK(F ) and the en-
crypted search request for each query Qi, EncSK(Qi) =
{EncSK(Q1), EncSK(Q2), · · · }.
• Trace: A history trace is a trace of a set of queries, denoted

as Tr(H) = {Tr(Q1), Tr(Q2), ...}. It captures the information
to be learned by the cloud server for each query Qi including
the length of the query vectors, the search pattern PAQi

and
the outcome of the search, e.g., Tr(Qi) = δi where δi is the
set of returned image identifiers matching the query Qi.

As in Sun et al. [13] and Wang et al.[23], our proof is based
on the following argument: given two histories that produce
the same trace, if the cloud server cannot distinguish which
history is produced by the simulator, then, the cloud server
cannot learn additional knowledge beyond the information that
the system is willing to leak.

We adopt a simulator which can simulate a view, V I ′

indistinguishable from cloud server’s view, V I . It works as
follows: The simulator randomly picks two vectors U1, U2,
one split vector S′ ∈ {0, 1}n and sets SK ′={U1, U2, S′}.

1. For an encrypted query EncSK(Qi), the simulator gen-
erates EncSK′ (Q′i) as follows:

(i) The simulator selects a random string s ∈ {0, 1}n. Ensure
that the number of 1s in s is the same as the number of 1s in
Qi but their positions are different and sets Q′i=s.

(ii) Generate the encrypted search request for each Q′i and
sets Enc(Q′)={EncSK′(Q

′
1), EncSK′(Q

′
2), · · · }

2. Based on the search pattern PAQi
, the simulator can

generate Enc(I ′) as follows:
(i) Assume PAQi

goes through node j at level h of the
index tree. Let V ′h,j be the stored vector at the corresponding
node in the simulated index tree. V ′h,j is initially a null vector.

(ii) The simulator sets V ′h,j = V ′h,j +Q′i.
(iii) After all queries are processed, the simulator converts

the V ′h,j into a vector ∈ {0, 1}n by replacing the elements
bigger than 1 with 1 and generates EncSK′(V

′
h,j).

3. The simulator outputs the view V I(H ′)=(EncSK′(F
′),

EncSK′(I
′), EncSK′(Q

′)).
In summary, the EncSK′(I

′) and EncSK′(Q
′) are gen-

erated such that the lengths of individual components are
the same as those in EncSK(I) and EncSK(Q). They also
generate the same trace as the one that the cloud server
has. Thus, we claim that no probabilistic polynomial-time
(P.P.T) adversary can distinguish between the view V I(H ′)
and V I(H).
B. Security Analysis of Our Scheme Under the Known
Background Model

Under the known background model, we assume the cloud
server can analyze past queries and likely link frequently used
search contents in encrypted queries with their matched results.
Thus, in this subsection, we analyze the security of our basic
and enhanced schemes under the known background attack
model. For each query Qi we generate the encrypted search
request as EncSK(Qi). Since the adopted vector encryption
method provides non-deterministic encryption, in light of the
random vector splitting procedure. Thus, the same search
request (e.g., same search contents) will be encrypted to

different query vectors. Therefore, our schemes can achieve
query unlinkabibility such that it is hard for the cloud server
to link one transformed query request to another even if both
contain the same search content.

VI. SYSTEM EVALUATION
To evaluate the performance of our scheme, we implement

CASHEIRS using Python programming language and evaluate
it using a laptop running OS X with 2.5GHz Intel Core i7 CPU
and 16GB Memory. We use Precision at top k(P@k) and Mean
Average Precision(mAP) as the performance metrics.
• P@k: Precision at top k (P@k) is defined as follows:

P@k =
num correct

k
(4)

where num correct is the number of relevant images in
the top-k positions in the query result list.

• mAP: Mean average precision (mAP) is the overall
average of the average precision (AP) computed for each
query image. The average precision can be computed as
follows:

AP (q) =

∑n
k=1(P@k ∗ rel(k))

N
(5)

where k is the position in the ranked result; n is the
number of returned images for a query image q; rel(k)
is 1 if the item at rank k in the result list is a ground
truth image, 0 otherwise; N is the number of ground
truth images.

We conduct the experimental evaluation using two well-
known datasets: Caltech256 [24] and INRIA Holidays dataset
[25]. The Caltech256 dataset has 30,608 images which can be
classified into 256 distinct object categories and an “other”
category. Each category contains at least 80 images. The
INRIA Holiday dataset contains 1491 images, which can
be classified into 500 image groups, each representing a
distinct scene or object. In addition, for CNN feature ex-
traction, we use Caffe [20] implementation and evaluate
the performance of CASHEIRS by varying PCA-d, d =
{2048, 1204, 512, 128, 64}, used in the PCA-ITQ step.
A. Construction Time & Memory Cost For Index Tree

To set up our system, five operations are needed: (i) loading
a pre-trained CNN model, (ii) extracting CNN features from
training images, (iii) encoding CNN features to similarity-
preserving binary codes, (iv) encrypting features of training
images, and (v) building a Hierarchical Index Tree. In our
scheme, we randomly choose 50 images from each category of
Caltech256 [24] and store them in the cloud after encryption.
Then, as in [17], we only use 40 images per category for
training. We use 50 iterations to learn a Rotation Matrix which
is used to convert a 4096 dimension CNN feature into a 128
dimensional binary code in the PCA-ITQ approach. Next, we
apply our adapted Hierarchical Clustering method to group
images into different clusters (leaf nodes) by using K-Means
clustering algorithm, and merge clusters (with Tht = 0.5)
at different levels of a hierarchical index tree. We also com-
pute the Representative Vectors that need to be stored at
intermediate nodes of the hierarchical index tree. Finally, all
the image binary codes and RVs are encrypted. The memory
cost and computation time incurred by a data owner for this
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index tree construction process are shown in Table I assuming
PCA-128 is used, where all data are averaged over 5 runs.
In general, a fixed memory cost of 306.25MB is incurred
for storing a pre-trained CNN model, PCA matrix, Rotation
Matrix, Encryption keys, and the system and program code.
As for the memory cost of constructing hierarchical tree, a
linear cost of 4MB+0.0166*total images is incurred which is
about 45.5MB for Cat-50, and hence total memory cost for
Cat-50 is about 351.8MB.

Figure 5 shows the computation time of building a hier-
archical index tree using different numbers of categories and
leaf nodes. All categories are from the Caltech256 dataset [24].
For each category, we randomly choose 50 images to build the
index tree. From the results, we see that the construction time
increases almost linearly with the number of categories but it
is O(n2) with the number of leaf nodes, n.

B. Storage Cost
CASHEIRS needs to store six files: (i) the pre-trained CNN

model which is used to extract CNN feature from images;
(ii) PCA and rotation matrices which are used to encode a
CNN feature into a binary code; (iii) the encrypted hierarchical
index tree; (iv) encrypted image features; (v) encrypted images
in databases; and (v) encryption keys. Here, we compare the
storage cost of CASHEIRS with the following 3 schemes:

1. Hierarchical Semantic Indexing for Large Scale Image
Retrieval Scheme (B-Hie) [3]: B-Hie trains a 1-VS-all SVM
classifier for each category and fits a sigmoid function to
convert the output of a classifier into a probability value. Then,
B-Hie feeds each training image to all trained classifiers to get
the predicted probability values and regards the probability
values as an attribute vector of that image. B-Hie uses locality
sensitive hashing (LSH) to assign all images into different
groups based on their attribute vectors. In the query process, B-
Hie first generates an attribute vector for a query image using
all classifiers. Then, B-Hie uses this attribute vector to find a
matching group. All images in this group are then regarded
as candidate images. Next, B-Hie computes a similarity score
between the query image and each candidate image, ranks the
candidate images based on their similarity scores, and return
the related results.

TABLE I: System Setup Cost
CASHEIRS Set Up Cat 50 Cat 100 Cat 150 Cat 200 Cat 250
Memory Cost (MB) 351.80 393.09 432.08 487.73 542.96

Computation Time (s) 163.93 323.42 484.51 646.60 817.46
Cloud Storage Cost (MB) Cat 50 Cat 100 Cat 150 Cat 200 Cat 250

CASHEIRS 40.6 81.0 121.5 161.4 201.7
B-Hie 59.8 120.4 181.0 241.7 302.4
OASIS 109.3 197.4 285.5 373.6 461.7

SEISA (PCA-128) 40.3 80.8 122.3 167.1 211.8
SEISA (PCA-512) 55.7 113.9 175.9 239.6 303.3

2. Online Algorithm for Scalable Image Similarity
Learning (OASIS) [9]: OASIS first extracts a feature vector
pi from each image, i. Then, OASIS learns a weight metric
W which is used in a relevance metric Sw(pi, pj) = pTi Wpj
where Sw produces a large value for a pair of similar images
but a small value for a pair of dissimilar images. Thus, this
relevance metric can be used to check if two images are similar
or share the same class label.

3. Secure and Efficient Encrypted Image Search With
Access Control Scheme (SEISA) [4]: SEISA extracts Fisher
vectors from all images and employs K-Means algorithm to
group them into different clusters. If any cluster contains more
than T (a predefined threshold) images, then all images in that
cluster will be reclustered again. This procedure is repeated
until no cluster contains more than T images. In the query
process, SEISA first uses a Fisher vector extracted from the
query image to search through the index tree. At each level,
SEISA chooses the node with the shortest distance between
its mean vector and the feature vector of a query image, and
searches through the child nodes of this selected node. After
finding the matched leaf node, SEISA returns the sorted list of
all images in this node and their associated similarity scores.

We report the storage cost for all 4 schemes using the
Caltech256 dataset in Tables I. In general, both the data owner
and the data user need to store 248.1MB of CNN related
information and encryption keys: a pre-trained CNN model
(244.7MB), PCA matrix (3.3MB), Rotation Matrix (105KB)
and Encryption Keys (1.7KB). In addition, the data owner also
needs to store encrypted images (about 14.28KB/image for the
Caltech 256 dataset) and information related to the index tree.
For 50 categories, we need a total of 40.6MB: 440KB for the
encrypted hierarchical index tree, encrypted image features of
5.3 MB, and 2500 (50 images/categories) encrypted images.
The cloud only needs to store encrypted images, encrypted
image features and the index tree information.

C. Search Evaluation
In this sub-section, we compare the search performance of

CASHEIRS with the three schemes described earlier.
1) Query Latency & Search Time Performance: For each

query, the latency mainly consists of three components: (i)
encrypted query generation time, (ii) the search time for the
cloud to traverse through the index tree, (iii) internet round
trip latency between a client and the server. In this paper, we
only report the first two latency components. An additional
300-400ms can be added for the 3rd component assuming the
client and the server are in east/west coast respectively and no
internet congestion occurs during the query process.

On the average, it takes a total of 52ms to generate an
encrypted query: 48.8ms in extracting CNN feature (4096
dimension) from a query image, 2.9ms in binary encoding
(using PCA-128), and 0.3ms in encrypting. After receiving an
encrypted query (PCA-128), the cloud takes on the average
25ms (compared to 6ms without encryption) to search for can-
didate images through the index tree built for 100 categories.
Table II shows the search time comparison of the 3 schemes we
considered. For a fairer comparison, we assume that the 10,000



dimension image feature vector used in OASIS is compressed
via LSH into a 8192 bit vector for more efficient similarity
score computation.

2) Search Accuracy: We conducted 3 experiments (using
Ths = 0.8) to compare CASHEIRS with three schemes.

(A) Exp 1: This experiment is designed to evaluate the
effectiveness of using RV in our index tree to identify the cor-
rect category of a query image. Here, we use the Caltech256
dataset [24] which has category labels. We randomly choose
50, 100, 150, 200, 250 categories from the Caltech256 dataset.
For each category, we split its images into two sets (50 images
for building the index tree and 25 images for query). Here,
we simply use the category labels of the images for index
tree construction instead of employing K-Means clustering. In
the query process, after receiving a query, CASHEIRS goes
through the hierarchical index tree to identify a category for
the query image. Then, we compare the identified category
with the ground truth to compute the P@1 (precision at 1).
Figure 6 shows that RV is quite effective in representing image
features of images belonging to each intermediate node since
the achieved precision is high. In addition, one can observe
that more categories lead to lower accuracy because more
categories result in a higher probability that two categories
have similar Category Representative Vector (RV), e.g. beer-
mug and coffee-mug. Overall, CASHEIRS (without the K-
means clustering step) achieves better than 70% precision,
even if the dimension of the feature vector is reduced to PCA-
128. The precision reduces sharply when the dimension is
reduced to PCA-64. Thus, we choose PCA-128 as a default
setting in this paper, as this setting improves the storage and
communication cost while maintaining high query accuracy.

(B) Exp 2: In this experiment we compare CASHEIRS
with two existing methods: B-Hie [3] and OASIS [9]. We first
choose 10, 20, and 50 classes (the same classes as Deng et al.
[3] and Chechik et al. [9]) from the Caltech256 dataset [24]
(For more details about the chosen classes, please refer to [9]).
Then, we randomly split all images into two sets (25 images
as queries and 50 images as the correct retrieval results per
class). Next, for each category, we randomly choose 40 images
(the same number of training images as B-Hie [3] and OASIS
[9]) as the input to ITQ to learn the rotation matrix. During the
process of index tree construction, we first assume all images
are without labels and employ K-Means algorithm to cluster
images into 100 groups before building the index tree. We
report the average precision at top k of 5 runs for 10, 20 and 50
classes from the Caltech 256 dataset in Figure 7 as we vary k.
From the results, we can see that CASHEIRS is more accurate

TABLE II: Comparison Results
Caltech256

Schemes Search Time (ms)
Category-10 Category-20 Category-50

CASHEIRS 4.1 9.6 12.9
B-Hie 13.3 23.2 52.2
OASIS 131.9 132.6 133.9

INRIA Holiday (10 million images)
Scheme Search Time (ms) mAP

CASHEIRS 95.2 0.64
SEISA 87.5 0.55

than the B-Hie [3] and OASIS schemes [9]. We also observe
that comparing the achievable result for 50 categories in Fig.
7 with that in Fig. 6, using K-means clustering results in lower
accuracy than using category labels but K-means clustering is
useful for many image datasets do not have category labels.

(C) Exp 3: Finally, we also use the INRIA Holidays Dataset
to compare CASHEIRS with SEISA [4] where Yuan et al.
propose a hierarchical index tree for encrypted image retrieval.
Both SEISA [4] and CASHEIRS use hierarchical index tree,
but their methods for building index tree and generating
queries are totally different. SEISA [4] builds the index tree
from top down, while CASHEIRS (ours) builds an index
tree from bottom up. In addition, during query processing,
SEISA [4] only chooses one node from the next level, while
CASHEIRS may choose one or multiple nodes at each level.

We follow the same experimental set-up as Yuan et al. [4].
Specifically, we generate 10 Million image features (PCA-128)
randomly, and then mix them with the features extracted from
INRIA Holiday dataset [25]. Before building the index tree,
we employ K-Means algorithm to cluster all images into 100
groups. In the query process, the first image of each image
group is used as a query image while the remaining images
within the same group are considered the correct retrieval
results. We report the comparison results in Table II.

Communication Cost: Communication cost in
CASHEIRS consists of four parts: (i) the encrypted data
which the data owner sends to the cloud; (ii) the information
that the data owner sends to users; (iii) an encrypted search
query sent from a user to the cloud; and (iv) the query results
returned to a querying user by the cloud server.

The data owner needs to send encrypted images, en-
crypted image features and encrypted index tree to the cloud,
with the same size as the storage in the cloud(11.2MB
+ 14.28KB/encrypted image). A user receives CNN related
information(248.1MB) from the data owner. For each query, a
user sends 2KB encrypted query information to the cloud and
receives 14.28KB/encrypted image from the cloud.

VII. PROTOTYPE EVALUATION
Our initial prototype system consists of a cloud server (a

laptop described in Section VI) and a Samsung S5 phone as
a data user’s mobile device. Samsung S5 has a Snapdragon
801 chip with Quad-core CPU@2.5GHz and 2GB RAM. The
smartphone communicates with the server via a WiFi router. In
the Android client software, Caffe APIs are called to extract
CNN feature from a query image. Then, this CNN feature
is converted into 128bit binary code and later encrypted. To
handle complex image transformations and minimize memory
usage, Picasso, an image downloading library for Android, is
used to download query results.

Here, we focus our evaluation on the client device. We
measure the computation time, memory cost, and the energy
cost of performing a search request. In our prototype, the
Android client takes on the average 5725ms to load the pre-
trained CNN model and 602ms to generate the encrypted
image feature. In contrast, it takes 144ms and 52ms corre-
spondingly on the 2.5GHz Intel Core i7 CPU laptop with
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Fig. 7: Comparison with B-Hie[3] and OASIS[9] on 10 classes(left), 20 classes(middle) and 50 classes(right) from Caltech256. Each curve shows the precision
at top k as a function of k neighbors. All curves except ours are extracted from [3] and [9].

16GB memory. The phone takes 161ms, 257ms and 473ms
to process top-5, top-10 and top-15 returned images with
an index tree for 50 categories. For 100 categories, it takes
182ms, 327ms and 564ms correspondingly. The Android client
consumes the same memory cost of 306.3MBytes (same as the
laptop) for storing the pre-trained CNN model, PCA matrix,
rotation matrix, encryption keys and client code. It costs 6.30J
to load the CNN model, and 2.26J to generate the encrypted
feature for a query image. During a query process, it costs
0.12J, 0.28J and 0.47J to download and process the top-5,
top-10 and top-15 returned images respectively.

VIII. CONCLUSION AND FUTURE RESEARCH
In this paper, we propose an efficient and secure image re-

trieval scheme called CASHEIRS which employs CNN model
to extract discriminative features from images to improve
retrieval accuracy. For storage and communication efficiency,
CASHEIRS converts CNN features into binary codes. For
search efficiency, a hierarchical encrypted index tree with
encrypted representative vectors of categories of images is
constructed. Our experimental results show that CASHEIRS
achieves higher accuracy in finding matching images while
incurring smaller storage and communication cost when com-
pared to several existing schemes. In the near future, we
intend to investigate the performance of CASHEIRS using
larger image datasets, e.g., ImageNet. Furthermore, compared
to the non-secure version, CASHEIRS with the security feature
incurs 64 times larger storage and communication cost. Thus,
we also hope to explore other more efficient security solution.
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