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Abstract—Modern face recognition systems are accurate but
they are vulnerable to different types of spoofing attacks. To solve
this problem, conventional face authentication systems typically
employ an additional module to analyze the liveness of the input
faces before feeding it into the face recognition module. Such
two-stage designs not only suffer from longer processing time
but also require more storage and resources, which are usually
limited on mobile and embedded platforms.

In this paper, we propose a multi-task Convolutional Neural
Network(CNN), namely LiveFace, for face-authentication. Given
an input face image, LiveFace generates two outputs through
a single stage: (i) a face representation that can be used for
identification or verification, and (ii) the corresponding liveness
score. The two tasks share lower layers to reduce the computation
cost. Experimental results using three datasets show that our
model achieves a comparable performance on both face recogni-
tion and anti-spoofing tasks but much faster than conventional
authentication systems. In addition, we have implemented a
prototype of our scheme on Android phones and demonstrated
that our scheme can run in real-time on three Android devices
that we have tested.

Index Terms—Face Recognition, Face Anti-spoofing, Liveness
Detection

I. INTRODUCTION

Modern deep-learning based face recognition systems have
achieved comparable performances to human-beings [1] [2],
and the accuracy continues to improve by using more training
data and deeper neural networks [3] [4]. However, these
systems are vulnerable to face-spoofing attacks. For example,
we can easily fool the system by showing a photo of a valid
user in front of the camera. In addition, the size and the
execution speed of the model also become crucial concerns
for mobile and embedded face authentication systems due to
their limited storage and computational resources.

While face recognition has been intensely studied for
decades, face anti-spoofing is still a relatively new topic. Dif-
ferent approaches have been explored to defend face spoofing
attacks, including both traditional methods which primarily
use hand-crafted features, and CNN-based methods which
utilize deep neural networks for feature extraction. Existing
approaches focus on solving face recognition and face anti-
spoofing independently, and to the best of our knowledge, none
of them combines these two tasks into a single pass.

Inspired by the success of Multi-Task Learning(MTL) on
many face-related tasks [5] [6] [7], we propose LiveFace, a
multi-task CNN that solves these two crucial problems through
a single stage to speed up the authentication procedure. We
believe that there are some common features that can be shared
between the two tasks. Our goal is to minimize the additional
cost of adding a second task by sharing some layers between
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Fig. 1: A comparison between typical face authentication
systems and our scheme. Top row shows the procedure of
a typical face authentication system, while the bottom row
shows the procedure of our scheme.

the two tasks. Figure 1 shows the difference between a typical
face authentication system and the LiveFace.

The performance of our model is evaluated on popular
face recognition and face anti-spoofing datasets including
LFW Benchmark [8], CASIA-FASD [9] and Replay-Attack
Database [10]. A surprising finding is that multi-task learn-
ing also improves the performance of the face anti-spoofing
task compared to training it independently. Execution speed
evaluation shows that our multi-task model runs as fast as the
single-task models and much faster than any combination of
existing methods. Details of our experiments and evaluations
are discussed in Section IV.

Our main contributions can be summarized as follows:
• We propose a multi-task CNN that solves face recognition

and face anti-spoofing via a single model to optimize the
authentication procedure.

• We propose a training strategy to train our multi-task
model from two different datasets.

• Our model achieves comparable performance on both
tasks compared to other state-of-the-art methods but runs
much faster and requires fewer resource.

• We have also implemented our scheme on Android
phones and evaluated their execution time.

II. RELATED WORK

A. Face Recognition
The goal of a face recognition system is to identify a person

from a digital image. Traditional face recognition algorithms
extract facial features from handcrafted local visual descriptors
such as LBP [11], SIFT [12], HOG [13], etc. According
to [14], these handcrafted feature extractors suffer from two
drawbacks. First, manually designing an optimal encoding
method is difficult. Second, handcrafted descriptors usually
lead to a less informative and less compact representation.



Fig. 2: The model architecture of LiveFace. The first three blocks are shared between two tasks, then the model is split into
two branches. The number above each block is the output shape of the pooling layer. The output dimension of the Face
Anti-spoofing (FA) branch is two, which corresponds to the probability of “live” and “fake”. During training, the last layer of
the Face Recognition (FR) branch is a Softmax FC layer that has the size equals to the number of people in the dataset. Once
the training is done, this layer is removed and the output of the FR branch is the learned representation R. As illustrated in
the legend, same type of layers use the same configuration such as kernel size and strides.

Modern CNN-based face recognition systems have achieved
the same level of accuracy as human-beings.Taigman et al. [1]
proposes to perform 3D face alignment before fedding it into a
deep neural network. Their work was later extended by a series
of DeepID related papers [15] [2] which explore several new
ideas to improve the performance by stacking a large number
of CNNs, which results in a complicated final model. Schroff
et al. [4] present FaceNet that achieves better performance than
DeepFace using a massive dataset and a novel loss function.
Parkhi et al. [3] propose to train a very deep neural network
for face recognition without any embellishments and achieve
results comparable to the state-of-the-art.

B. Face Anti-spoofing

The goal of face anti-spoofing, also known as liveness
detection, is to determine if an input face image is genuine
or fake. In this paper, we assume that we can only obtain the
input face through a built-in camera, thus other methods that
utilize input data from special sensors such as IR sensor or
depth-camera will not be discussed.

Traditional Face Anti-spoofing Methods. Traditional
methods focus on analyzing the texture or the quality of
the input face images. Patel et al. [16] propose to analyze
the Moiré pattern of the given face images and find it very
effective against replay video attacks. Agarwal et al. [17]
achieves a good performance by extracting Haralick features
after Redundant Discrete Wavelet Transform (RDWT). How-
ever, their performance is sensitive to the number of frames.
There are also a few works that utilize motion clues such
as eye-blinks [18] and lips movements [19]. However, such
approaches will fail when attackers replay recorded videos.

A significant drawback of traditional face anti-spoofing
methods is that hand-crafted features may not be generalizable,
hence the performance of these approaches usually fluctuate a
lot on different datasets.

Deep Learning-based Face Anti-spoofing Methods. Li
et al. [20] apply an SVM to the convolutional responses of
a CNN for anti-spoofing. Yang et al. [21] propose to use a
stack of images with different scales cropped from the original
frame as the input of a CNN model. Xu et al. [22] proposes to
leverage the temporal features between frames via a LSTM-
CNN networks. Atoum et al. [23] proposes to use a Fully
Convolutional Neural Network to estimate the depth of the
input face, the generated depth map is then fed into an SVM
to distinguish between live and spoofed faces.

III. PROPOSED METHOD

A. Model Architecture
Our model structure is a modified version of CASIA-Net

[24]. Compared to its original structure, several modifications
have been applied. First, we change the input shape of the
model from 100x100x1 to 160x160x3 to include more infor-
mation. Second, Batch Normalization layers are included to
accelerate the convergence. Third, several convolution blocks
are added as a new branch for the face anti-spoofing task.

Figure 2 describes the architecture of our proposed network.
The first K (K = 3 in Figure 2) blocks in the proposed
model are shared between the two tasks. Each convolutional
layer is followed by a Batch Normalization operation and a
ReLU [25] activation except the last one in both branches. In
addition, a dropout layer is applied after the Flatten layers in
both branches.

During our multi-task learning, the shared blocks learn an
intermediate feature map Fs for both face recognition and face
anti-spoofing tasks. The learned feature map Fs may include
some common features Fc useful to both branches and task-
specific features Ffr and Ffa that can be later decoupled by
subsequent task-specific blocks. Based on the shared feature
map Fs, each task-specific branch further learns the final
representation for its classification task. Eventually, the final



representation R can be fed into the K-way Softmax classifier
and the probability assigned to the jth class is:

P (y = j|R) = exp(RTWj + bj)∑K
k=1 exp(R

TWk + bk)
, (1)

where W and b are the weights and bias matrices of the FC
layer. The output of the Softmax classifier is a probability
distribution, and the predicted class is defined as the one with
the highest probability.

B. Data Preprocessing
While some existing approaches involve domain-specific

knowledge into the preprocessing step [26] [27] [23], we train
our model to learn all features by itself through end-to-end
training. A face detector [6] is applied to each input image,
and the detected faces are then aligned and cropped based on
the position of the eyes. The input images are normalized to
zero-center and finally resized to 160x160 in RGB color space
before being fed into the model.

C. Training Strategy
Training a multi-task model typically requires the training

data to include multiple labels. However, currently there is
no public dataset that can be used to train FR & FA tasks
simultaneously. On the one hand, large face datasets with a
great variety of gender, age, and race are available to train a
robust face recognition model but they do not include spoofing
samples. On the other hand, only a small number of identities
are included in the popular anti-spoofing datasets, and such
datasets lack varieties.

To solve this problem, we propose to use a two-step training
strategy to train our model using two datasets.

Step 1: Considering that a robust face representation is more
difficult to learn, we first remove the FA branch and train the
FR branch independently from scratch using a large human
face dataset.

Step 2: Based on the pre-trained model from step 1, we
manually add the identity label to the training samples in the
anti-spoofing dataset and use it to do the multi-task training.
In this step, the weights in FR Blocks 4 & 5 are frozen.

The cross-entropy loss function is employed in both
branches. Given the ground truth vector y and the prediction
vector ŷ, the cross-entropy loss is calculated by:

L(y, ŷ) = − 1

K
(

K∑
k=1

yk · log(ŷk) (2)

where K is the number of face identities.
During the multi-task training in Step 2, the goal is to

minimize the combined loss:
Ltotal = αLfr + βLfa (3)

where α and β are factors that control the importance of each
task. We define them as α, β ∈ [0, 1] and α+ β = 1.

While conventional transfer learning approaches typically
freeze the base of a pre-trained model and fine-tune its later
stage layers, we propose to freeze the later layers and fine-tune
the front shared layers. This design is based on the following
intuition – let us assume that a non-linear mapping Gfr from

Fs to the face representation R is learned during Step 1.
While training the FA branch during Step 2, the mapping
Gfr is preserved to prevent identity features Ffr from being
overwritten by back-propagation from the FA branch. It also
serves as a regularization term that forces the FA branch
to focus on face-related features and reduces the model’s
attention on non-generalizable features.

For example, the border of the photos and screens is an
obvious clue that distinguishes spoofing attacks, but it is not
generalizable because attackers can easily hide the borders by
moving them closer to the camera. Without any regularization
during training, the CNN is likely to pay too much attention to
these non-generalizable features and ignore some key features.
The effectiveness of the proposed training strategy is verified
by experimental results in the following section.

IV. EXPERIMENTS

A. Datasets
CASIA-WebFace [24] is a large-scale human face dataset

containing 494,414 images of 10,575 subjects. All the images
are collected from the Internet. In this paper, the CASIA-
WebFace is only used to train the FR branch in the first step.

Labeled Faces in the Wild (LFW) [8] is a popular
benchmark for evaluating a face verification algorithm. The
dataset contains more than 13,233 images of 5,749 subjects
collected from the web, and the test set contains 6000 pairs
of faces in 10 splits labeled with “same” or “not same”. In
this paper, we use LFW to evaluate the performance of the
FR branch in our model.

CASIA-FASD [9] is a face anti-spoofing dataset containing
600 video clips of 50 subjects. Three different types of face
spoofing attacks are implemented, which include warped photo
attack, cut photo attack, and video attack. Each subject has 12
videos (3 genuine and 9 fake), and three different type of
spoof attacks are included. The entire dataset is split into a
training set containing 20 subjects and a testing set containing
30 subjects.

Replay-Attack [10] is a face anti-spoofing dataset contain-
ing 1,300 videos of photo and video attacks of 50 subjects
under different lighting conditions. The whole dataset is di-
vided to a training set with 15 subjects, a development set
with 15 subjects and a testing sets with 20 subjects.

B. Experimental Parameter Settings and Setup
We use the Keras [28] framework to implement the pro-

posed scheme. During training Step 1, the learning rate is
initially set to 0.01 and reduces every 5 epochs by a factor of
0.1. During training Step 2, the learning rate is initially set to
0.001 and reduces every 2 epochs with a factor of 0.4. α and
β which control the relative importance of the two tasks are
experimentally determined to be 0.7 and 0.3.

During the whole training process, a SGD optimizer with
a momentum of 0.9 is used. The batch size is set to 8. We
augment the data using random horizontal flipping.

To evaluate the performance of face recognition branch,
we follow the “unconstrained” protocol [8] and evaluate the



TABLE I: Performance comparison between different model struc-
ture. FR-ACC is the verification accuracy on LFW for the FR branch,
while FA-EER and FA-HTER is the EER and HTER on CASIA-
FASD for the FA branch.
# of Shared Blocks 0 1 2 3 4 5

FR-ACC (%) 97.08 97.01 96.97 97.02 97.00 96.83
FA-EER (%) 2.22 2.78 2.78 0.83 2.96 8.15

FA-HTER (%) 1.85 2.04 2.59 0.56 1.85 6.85

performance on LFW benchmark. For each face pair in LFW,
we calculate the cosine similarity between the two face repre-
sentations. The mean accuracy from 10 fold cross-validation
is reported. Given two face representations Ra and Rb, the
cosine similarity is defined as:

S =
Ra ·Rb

‖Ra||Rb|
, (4)

To evaluate the performance of our FA branch, we follow
the protocol associated with CASIA-FASD and Replay-Attack.
For each of the dataset, the training set is used for training
and the Equal Error Rate(EER) and the Half Total Error Rate
(HTER) is reported on the testing set. The development set
in Replay-Attack is only used to ensure convergence during
the training process. Since the dataset is composed of videos,
the video-wise classification is based on the average score
calculated from all video frames in the test set.

EER and HTER are two common metrics to evaluate a
biometric system. EER is the common rate where the False
Acceptance Rate (FAR) equals to the False Rejected Rate
(FRR). The HTER is defined as:

HTER =
FAR+ FRR

2
(5)

Because these two metrics are both related to the error rate,
the lower the EER and HTER, the better the model is.

C. Impacts of Model Structure
To study how different model structures impact the final

performance, we conducted a series of experiments using
different models where we vary the number of shared blocks.

First, for each of the FR & FA tasks, we train a model
that contains only the respective task. Each model is trained
from scratch by using the corresponding dataset (CASIA-
WebFace for the face recognition model and CASIA-FASD
for the face anti-spoofing model). The results of these two
models correspond to the values reported in the first column
in Table I where the number of shared blocks is 0. Then, we
start combining the two models into a multi-task model and
gradually increase the number of shared blocks. As we can
see, the model with 3 shared blocks outperforms others. Thus,
it is used as our final model.

D. Impacts of Training Strategy
To illustrate the advantages of the proposed training strategy,

we trained the LiveFace model with three different training
strategies. Training Step 1 described in section 3.3 is first
completed for all the strategies. Based on the trained model
from Step 1, we test the following training strategies during
the second training step. The CASIA-FASD dataset is used as
an example.

TABLE II: FR Accuracy on LFW of the resulting model using
different strategy.

Strategy Baseline Strategy 1 Strategy 2 Proposed

Accuracy (%) 97.08 97.08 96.83 97.02

Fig. 3: Frame-based ROC curves of the FA task using different
training strategy on CASIA-FASD.

Strategy 1: Freeze all the shared blocks and FR blocks,
only train the FA blocks.

Strategy 2: All blocks are trainable.
Proposed Strategy: Freeze only FR blocks, train the FA

blocks and the shared blocks.
For FR task, the face verification accuracy on LFW bench-

mark is reported in Table II. The model obtained after Step
1 is used as the baseline. Since Strategy 1 freezes all the
FR related blocks, the performance is exactly the same as
the baseline model. For FA task, the corresponding Receiver
Operating Characteristic (ROC) curves of different strategies
are compared in Figure 3. The frame-based results are used
to plot the curves to show a more discriminative comparison
since there are more video frames.

As we can see from Figure 3 and Table II, Strategy 1 keeps
the best performance for the FR task, but it heavily hampers
the learning of FA task. Strategy 2 allows the FA branch to
tune the shared block layers, which increases the performance
of FA task; however, it suffers from significant accuracy drop
on FR task. Our proposed strategy outperforms others on the
FA performance (as shown in Figure 3) and only has trivial
impacts (0.06%) on the FR task.

Based on the experimental results of different training
strategies, we have the following analysis:

1) For Strategy 1, the weights in the shared blocks and FR
blocks are frozen to protect all the features for FR learned from
step 1. Only the FA blocks were trained to extract the useful
information from the existing intermediate features map Fs.
However, the current feature map Fs is likely to include only
few information that can be leveraged to distinguish between
live and spoofed faces.

2) For Strategy 2, since all the weights are adjustable, the
learned face representation R is less stable during the training
process in step 2. The FR branch still needs to perform the
FR task on the anti-spoofing dataset but the adjustments in the
weights may affect the learned features in Fs and R from step
1 such that they degrade the FR accuracy.

3) For our proposed strategy, fine-tuning the shared blocks
allows some useful information for anti-spoofing to be added



TABLE III: Performance Comparison on LFW Benchmark when #
of networks = 1.

Method Training Data AccuracyImages People

DeepID2-Single [2] 0.20M 10,177 95.43%
DeepFace-Single [1] 4.40M 4,030 95.92%

CASIA-NET [24] 0.49M 10,575 96.13%
VGG-Faces [3] 2.60M 2,622 98.95%

FaceNet [4] 260.00M 8,000,000 99.63%

Our Model 0.49M 10,575 97.02%

TABLE IV: Performance Comparison on CASIA-FASD and
Replay-Attack In Terms of EER and HTER.

Method CASIA-FASD Replay-Attack
EER% HTER% EER% HTER%

LBP-TOP [29] 10.0 - 7.9 7.6
DPCNN [20] 4.50 - 2.90 6.10

LSTM-CNN. [22] 5.17 5.93 - -
Color-Texture [27] 6.20 - 0.40 2.90
Fisher-Vector [30] 2.80 - 0.10 2.20

Haralick Features [17] 1.10 - - -
Depth-based CNN [23] 2.85 2.52 0.86 0.75
Patch+Depth CNN [23] 2.67 2.27 0.79 0.72

Our Model 0.83 0.56 0.42 0.13

to the shared feature map Fs. Freezing the FR blocks allows
the mapping Gfr to be preserved for regularizing the resulting
Fs to keep useful information for face recognition.

E. Performance Comparison
We compare the performance of our model with other state-

of-the-art methods. For the face recognition task, the face
verification accuracy on LFW is used for comparison. While
many existing works use an ensemble of several networks
to achieve higher performances, we only list the results of
their single-net version for fair comparison. For the face anti-
spoofing task, the results on CASIA-FASD and Replay-Attack
datasets are used for comparison.

Table III shows the performance comparison for face recog-
nition task on LFW. As we can see, our model achieves
comparable performances to state-of-the-art methods by using
limited training data. For example, comparing to VGG-Faces
[3], our training data are 81% less than theirs but our accuracy
is only 1.93% lower.

Table IV shows the performance comparison for the face
anti-spoofing task on CASIA-FASD and Replay-Attack. On
the CASIA-FASD dataset, we improve the best EER by
24.55% and HTER by 75.33%. On the Replay-Attack dataset,
we improve the best HTER by 82.64%.

It is worth mentioning that our model works effectively on
both datasets, while previous works typically leave a huge
gap between the results on different datasets. For example,
Fisher-Vector [30] achieves 0.10% EER on Replay-Attack but
only has 2.20% HTER on the same dataset and 2.80% EER on
CASIA-FASD. This means our model works better on learning
those truly discriminative and generalizable features.

F. Execution Speed Comparison
To show the advantages of the running speed of our method,

we compare the execution speed of our method with other

TABLE V: Execution Speed Comparison (on CPU).
Method Task Speed (ms/frame)

DeepFace-Single [1] FR 429.42
CASIA-NET [24] FR 66.84

VGG-Faces [3] FR 1064.47
FaceNet (NN1) [4] FR 1956.42

Depth-based CNN [23] FA 876.75
Patch + Depth CNN [23] FA 960.33

Our Model FR + FA 224.52

TABLE VI: Execution Speed Evaluation on Mobile Phones.
Device CPU Cores Memory Speed (ms/frame)

Samsung Galaxy S5 Snapdragon 801 4 2GB 397.72
Samsung Galaxy S8 Snapdragon 835 8 4GB 253.03

OnePlus 5 Snapdragon 835 8 8GB 238.33

methods. For fair comparison, we carefully follow the papers
and replicate the structures of these methods to test the
execution speed on the same environment. We use a laptop
that has 1.4GHz Intel Core i5 CPU with 8GB RAM running
Mac OS High Sierra. All the preprocessing steps involved in
the different methods are excluded in the evaluation.

For face recognition methods, the execution time is counted
from the moment an image is fed until the face representation
is obtained. For the face anti-spoofing methods, the execution
time is evaluated from feeding in an image until the final
liveness score comes out. The final reported time is an average
of testing 100 times. All tests are using CPU only, i.e.
without GPU acceleration or any speed-up operation that could
accelerate CPU processing.

Table V shows the results of the speed evaluation. We can
see that our model runs faster than many single-task model. If
we combine an existing FR method with a FA method to form
a conventional two-step authentication system, our method will
be much faster. For example, if one uses Depth-based CNN
[23] for FA before using CASIA-NET [24] for FR, the total
execution time is 943.59 (876.75 + 66.84) ms/frame while
ours is only 224.52 ms/frame. We want to highlight that our
proposed scheme is an end-to-end CNN model, thus it runs
much faster with a GPU acceleration. It only takes 1.57 ms
per frame (FR+FA) on a NVIDIA GTX 1080 Ti GPU.

Fig. 4: Screenshots of our mobile App in three different cases. Left:
A valid user. Middle: A photo attack. Right: An unknown user.

G. Mobile Implementation
To test the performance of our model on our targeting

application scenario, we implement a prototype of our scheme



on Android phones as shown in Figure 4.
We deploy our application on three different models and

evaluate the execution speed in the same way we described
in section 4.6. The three devices we tested are (i) Samsung
Galaxy S5 which has a 4 Cores Snapdragon 811 CPU and
2 GB memory, (ii) Samsung Galaxy S8 which has a 8 cores
Snapdragon 835 CPU and 4 GB memory, and (iii) OnePlus 5
which has a 8 cores Snapdragon 835 CPU and 8GB memory.
Our results are reported in Table VI. The results show that
having faster CPUs and more memories improve the execution
speed of our proposed scheme. We have not optimized our
implementation on mobile phones yet so we anticipate that we
can achieve better performance with further optimizations.

V. CONCLUSION

Face recognition and face anti-spoofing are the two most
important procedures in a face authentication system. Unlike
existing methods that solve these two tasks independently, this
paper introduces a novel method that solves them together
through a single stage by using a multi-task Convolutional
Neural Network. In our model, lower-level features are shared
between two tasks to reduce the computational cost and
accelerate the authentication procedure. Since there is no
dataset that can be directly used to train these two tasks, we
propose a special training strategy to help the multi-task model
learn from two datasets. We believe that this training strategy
can also be applied to other similar multi-task models.

Performance comparison with other state-of-the-art methods
shows that our model achieves comparable results on both
tasks. Interestingly, our anti-spoofing branch outperforms ex-
isting approaches in three out of four metrics of two datasets.
Executing speed comparison shows that our model runs even
faster than many single-task model, and runs much faster than
any combination of the existing FA & FR methods.

We have also implemented a prototype of our scheme and
evaluated it on three types of Android phones. Our current
implementation does not use the GPUs available in these
phones. Utilizing such GPUs available in Android phones to
improve our performance further will be our near future work.
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