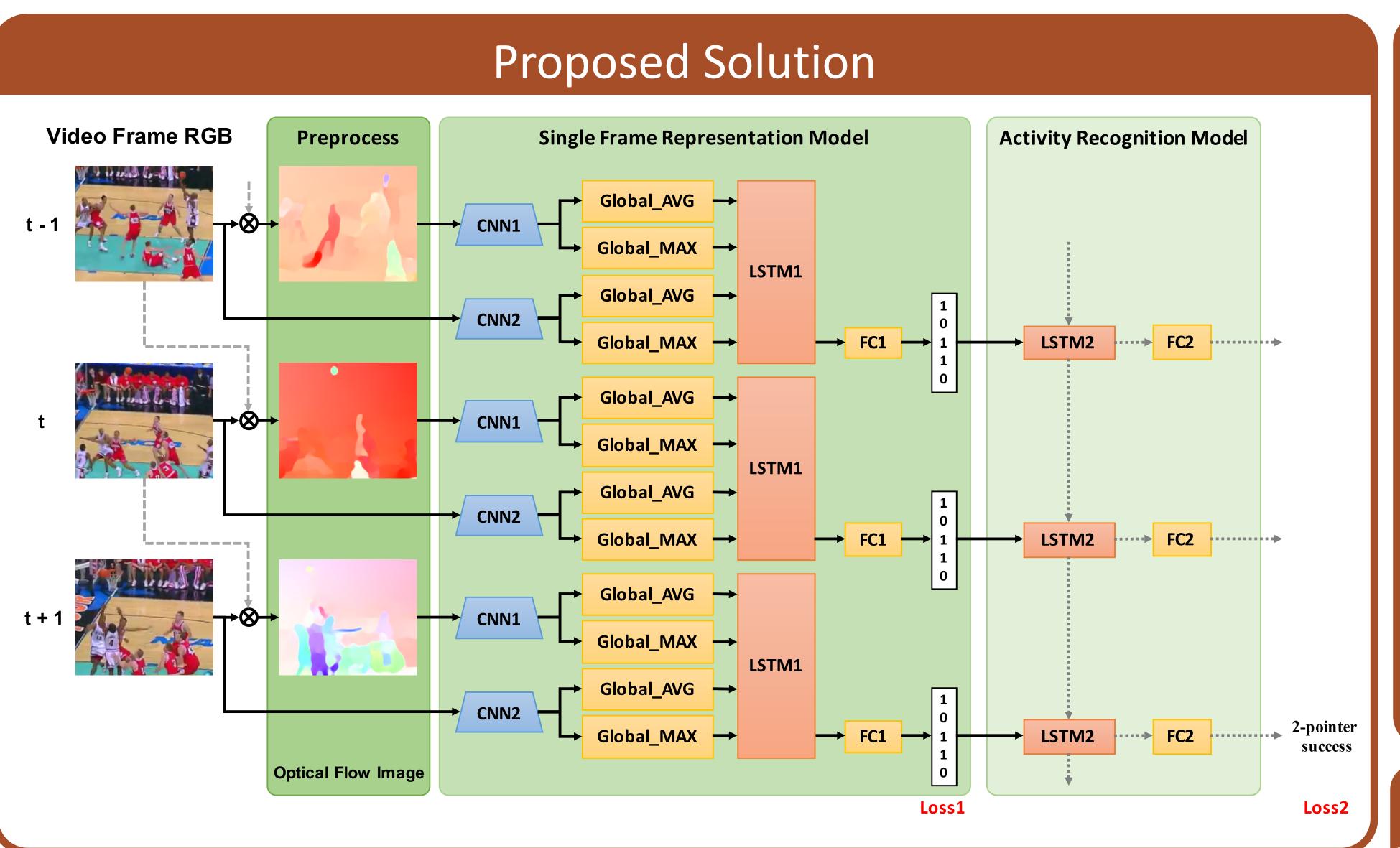


ReHAR: Robust and Efficient Human Activity Recognition

Xin Li, Mooi Choo Chuah

Department of Computer Science and Engineering



Introduction

We propose a novel robust and efficient human activity recognition scheme called ReHAR, which can be used to handle single person activities and group activities prediction.

Our Contributions:

- 1. Design a robust and efficient human activity recognition scheme to recognize complex human activities, e.g., group activities in sport games.
- 2. Extensive evaluation using two popular activity datasets show that our scheme achieves higher accuracy and runs an order of magnitude faster than existing schemes.
- Explore the visual explanation for our model to understand what it has learned.

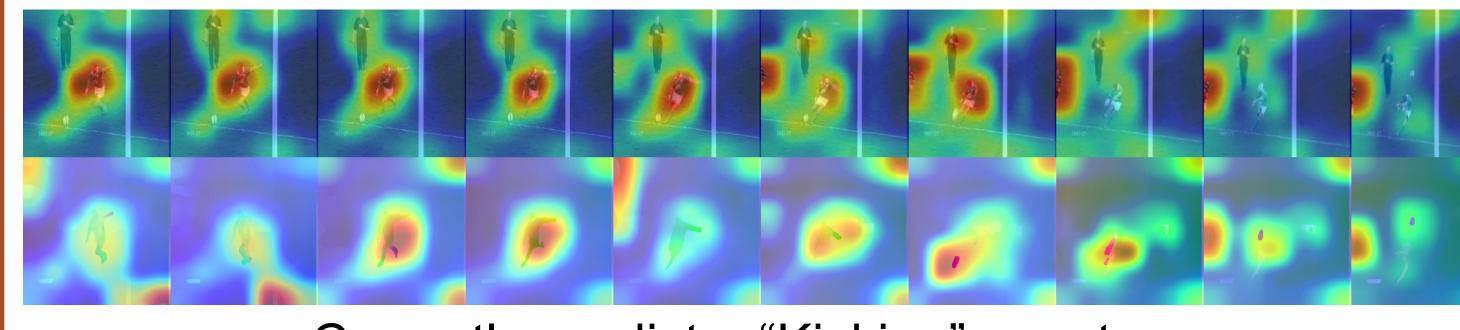
Experimental Results

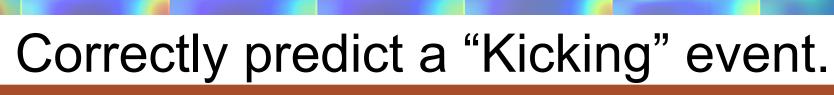
NCAA Basketball Dataset:

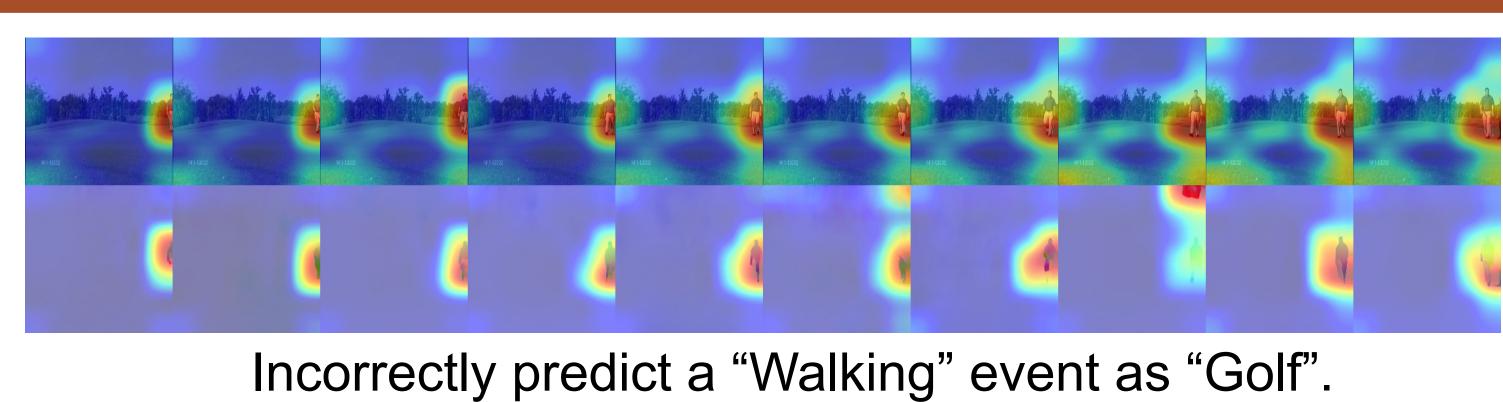
		3point S.	3point F.	throw S.	throw F.	layup S.	layup F.	2point S.	2point F.	dunk S.	dunk F.	steal	Mean
ı	IDT[4]	0.370	0.501	0.778	0.365	0.283	0.278	0.136	0.303	0.197	0.004	0.555	0.343
	IDT[4] player	0.428	0.481	0.703	0.623	0.300	0.311	0.233	0.285	0.171	0.010	0.473	0.365
	C3D[5]	0.117	0.282	0.642	0.319	0.195	0.185	0.078	0.254	0.047	0.004	0.303	0.221
	MIL[6]	0.237	0.335	0.597	0.318	0.257	0.247	0.224	0.299	0.112	0.005	0.843	0.316
	LRCN[7]	0.462	0.564	0.876	0.584	0.463	0.386	0.257	0.378	0.285	0.027	0.876	0.469
	Atten. no track[8]	0.583	0.668	0.892	0.671	0.489	0.426	0.281	0.442	0.210	0.006	0.886	0.505
ı	Atten, track[8]	0.600	0.738	0.882	0.516	0.500	0.445	0.341	0.471	0.291	0.004	0.893	0.516
	Ours	0.753	0.766	0.933	0.857	0.613	0.435	0.405	0.542	0.232	0.007	0.940	0.589

UCF Sports Action Dataset:

	Diving	Golf	Kicking	Lifting	Riding	Run	SkateB	Swing	SwingB	Walk	mAP
Gkioxari et al. [9]	0.758	0.693	0.546	0.991	0.896	0.549	0.298	0.887	0.745	0.447	0.681
Weinzaepfel et al. [10]	0.607	0.776	0.653	1.000	0.995	0.526	0.471	0.889	0.629	0.644	0.719
Peng et al. [11]	0.961	0.805	0.735	0.992	0.976	0.824	0.574	0.836	0.985	0.760	0.845
Hou et al. [12]	0.844	0.908	0.865	0.998	1.000	0.837	0.687	0.658	0.996	0.878	0.867
Ours	1.000	0.955	1.000	1.000	1.000	0.806	0.626	1.000	1.000	0.888	0.928


Our Model	No Global Layers	LSTM1 -> Convolutional layer	LSTM1 -> element-wise sum
0.928	0.889	0.766	0.702
			•


Future Work


- 1. Try different CNN model as base net, e.g. C3D or MobileNet.
- 2. Evaluate our model on larger dataset, e.g. UCF101 or THUMOS.

This work is partially supported by a Qualcomm gift and a GPU donated by NVIDIA.

Visual explanation

