

## ReHAR: Robust and Efficient Human Activity Recognition

Xin Li, Mooi Choo Chuah WACV18'

- Motivation
- The state-of-the-art scheme
- Our solution
- Evaluations
- Why does it work
- References



- Motivation
- The state-of-the-art scheme
- Our solution
- Evaluations
- Why does it work
- References



### Large amount of Videos





### Public Safety





Key events in sport videos





Search among Videos



#### Game highlights



**Public Safety** 





An efficient scheme for identifying activities is critically important.



- Motivation
- The state-of-the-art scheme
- Our solution
- Evaluations
- Why does it work
- References



#### Long Short Term Memory Network (LSTM)



Figure from http://colah.github.io/posts/2015-08-Understanding-LSTMs/



## Existing Work







## Existing Work

#### [2] Ibrahim Moustafa, et al. A Hierarchical Deep Temporal Model for Group Activity Recognition CVPR. 2016





## Existing Work

#### [3] Xin Li, Mooi Choo Chuah SBGAR: Semantics Based Group Activity Recognition ICCV. 2017





- Motivation
- The state-of-the-art scheme
- Our solution
- Evaluations
- Why does it work
- References



## Activity Recognition

#### **Our Solution**





## Activity Recognition

**Our Solution** 



$$Loss = (\sum_{t=1}^{1} loss_{1,t}) + \lambda * loss_2$$



- Motivation
- The state-of-the-art scheme
- Our solution
- Evaluations
- Why does it work
- References



## Dataset1: NCAA Basketball Dataset

NCAA Basketball dataset:

**11436** training videos**856** validation videos**2256** testing videos

| Event            | No. of videos Train (Test) |
|------------------|----------------------------|
| 3-point succ.    | 895 (188)                  |
| 3-point fail.    | 1934 (401)                 |
| free-throw succ. | 552 (94)                   |
| free-throw fail. | 344 (41)                   |
| layup succ.      | 1212 (233)                 |
| layup fail.      | 1286 (254)                 |
| 2-point succ.    | 1039 (148)                 |
| 2-point fail.    | 2014 (421)                 |
| slam dunk succ.  | 286 (54)                   |
| slam dunk fail.  | 47 (5)                     |
| steal            | 1827 (417)                 |



## Test Result using NCAA Basketball Dataset

|                    | 3point<br>S. | 3point<br>F. | throw<br>S. | throw<br>F. | layup<br>S. | layup<br>F. | 2point<br>S. | 2point<br>F. | dunk<br>S. | dunk<br>F. | steal | Mean  |
|--------------------|--------------|--------------|-------------|-------------|-------------|-------------|--------------|--------------|------------|------------|-------|-------|
| IDT[4]             | 0.370        | 0.501        | 0.778       | 0.365       | 0.283       | 0.278       | 0.136        | 0.303        | 0.197      | 0.004      | 0.555 | 0.343 |
| IDT[4] player      | 0.428        | 0.481        | 0.703       | 0.623       | 0.300       | 0.311       | 0.233        | 0.285        | 0.171      | 0.010      | 0.473 | 0.365 |
| C3D[5]             | 0.117        | 0.282        | 0.642       | 0.319       | 0.195       | 0.185       | 0.078        | 0.254        | 0.047      | 0.004      | 0.303 | 0.221 |
| MIL[6]             | 0.237        | 0.335        | 0.597       | 0.318       | 0.257       | 0.247       | 0.224        | 0.299        | 0.112      | 0.005      | 0.843 | 0.316 |
| LRCN[7]            | 0.462        | 0.564        | 0.876       | 0.584       | 0.463       | 0.386       | 0.257        | 0.378        | 0.285      | 0.027      | 0.876 | 0.469 |
| Atten. no track[8] | 0.583        | 0.668        | 0.892       | 0.671       | 0.489       | 0.426       | 0.281        | 0.442        | 0.210      | 0.006      | 0.886 | 0.505 |
| Atten. track[8]    | 0.600        | 0.738        | 0.882       | 0.516       | 0.500       | 0.445       | 0.341        | 0.471        | 0.291      | 0.004      | 0.893 | 0.516 |
| Ours               | 0.753        | 0.766        | 0.933       | 0.857       | 0.613       | 0.435       | 0.405        | 0.542        | 0.232      | 0.007      | 0.940 | 0.589 |

[4] Heng Wang, Alexander Kla ser, Cordelia Schmid, and Cheng-Lin Liu. Action recognition by dense trajectories. In CVPR, 2011.

[5] Du Tran, Lubomir D Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. C3d: generic features for video analysis. CoRR, abs/1412.0767, 2(7):8, 2014.

[6] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for multiple-instance learning. In Advances in neural information processing systems, pages 577–584, 2003.

[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Longterm recurrent convolutional networks for visual recognition and description. In ICCV, pages 2625–2634, 2015.

[8] Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija, Alexander Gorban, Kevin Murphy, and Li Fei-Fei. Detecting events and key actors in multi-person videos. ICCV, 2016.



### Test Result using NCAA Basketball Dataset

| 3point S. | 61.17     | 11.17     | 0.53     | 0.00     | 2.13     | 1.60     | 18.09     | 4.79      | 0.00    | 0.00    | 0.53  |
|-----------|-----------|-----------|----------|----------|----------|----------|-----------|-----------|---------|---------|-------|
| 3point F. | 1.75      | 72.07     | 0.00     | 0.00     | 0.00     | 1.00     | 1.00      | 23.19     | 0.00    | 0.00    | 1.00  |
| throw S.  | 1.06      | 0.00      | 87.23    | 6.38     | 3.19     | 0.00     | 1.06      | 0.00      | 0.00    | 0.00    | 1.06  |
| throw F.  | 0.00      | 4.88      | 17.07    | 75.61    | 0.00     | 0.00     | 0.00      | 0.00      | 0.00    | 0.00    | 2.44  |
| layup S.  | 2.58      | 1.29      | 0.43     | 0.00     | 59.66    | 12.02    | 15.88     | 6.01      | 1.72    | 0.00    | 0.43  |
| layup F.  | 0.00      | 3.94      | 0.00     | 0.00     | 8.66     | 47.64    | 1.57      | 35.83     | 0.00    | 0.00    | 2.36  |
| 2point S. | 12.16     | 4.05      | 0.68     | 0.00     | 31.08    | 6.08     | 36.49     | 7.43      | 0.00    | 0.00    | 2.03  |
| 2point F. | 1.66      | 16.86     | 0.00     | 0.24     | 1.19     | 17.10    | 0.95      | 58.43     | 0.00    | 0.00    | 3.56  |
| dunk S.   | 0.00      | 0.00      | 0.00     | 1.85     | 53.70    | 24.07    | 9.26      | 3.70      | 5.56    | 0.00    | 1.85  |
| dunk F.   | 0.00      | 0.00      | 0.00     | 0.00     | 0.00     | 60.00    | 0.00      | 20.00     | 0.00    | 0.00    | 20.00 |
| steal     | 0.00      | 4.32      | 0.00     | 0.24     | 1.92     | 5.04     | 0.00      | 6.24      | 0.00    | 0.00    | 82.25 |
|           | 3point S. | 3point F. | throw S. | throw F. | layup S. | layup F. | 2point S. | 2point F. | dunk S. | dunk F. | steal |



Group 10 shooting-related actions (except "steal") into 2 categories (success or failure)

|         | 3-point | free-throw | layup | 2-point | slam dunk | In total |
|---------|---------|------------|-------|---------|-----------|----------|
| Success | 188     | 94         | 233   | 148     | 54        | 717      |
| Failure | 401     | 41         | 254   | 421     | 5         | 1122     |

**88% testing samples** are correctly labeled into "Success" or "Failure" categories.



## Dataset2: UCF Sports Action Dataset

UCF Sports dataset:

- 103 training videos
- **47** testing videos

10 different sports categories

- Diving
- Golf
- Kicking
- Lifting
- Riding
- Run
- SkateBoarding
- Swing-Bench
- Swing-Side
- Walk



|                         | Diving | Golf  | Kicking | Lifting | Riding | Run   | SkateB | Swing | SwingB | Walk  | mAP   |
|-------------------------|--------|-------|---------|---------|--------|-------|--------|-------|--------|-------|-------|
| Gkioxari et al. [9]     | 0.758  | 0.693 | 0.546   | 0.991   | 0.896  | 0.549 | 0.298  | 0.887 | 0.745  | 0.447 | 0.681 |
| Weinzaepfel et al. [10] | 0.607  | 0.776 | 0.653   | 1.000   | 0.995  | 0.526 | 0.471  | 0.889 | 0.629  | 0.644 | 0.719 |
| Peng et al. [11]        | 0.961  | 0.805 | 0.735   | 0.992   | 0.976  | 0.824 | 0.574  | 0.836 | 0.985  | 0.760 | 0.845 |
| Hou et al. [12]         | 0.844  | 0.908 | 0.865   | 0.998   | 1.000  | 0.837 | 0.687  | 0.658 | 0.996  | 0.878 | 0.867 |
| Ours                    | 1.000  | 0.955 | 1.000   | 1.000   | 1.000  | 0.806 | 0.626  | 1.000 | 1.000  | 0.888 | 0.928 |

[9] Georgia Gkioxari and Jitendra Malik. Finding action tubes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 759–768, 2015.

[10] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. Learning to track for spatio-temporal action local- ization. In Proceedings of the IEEE international conference on computer vision, pages 3164–3172, 2015.

[11] Xiaojiang Peng and Cordelia Schmid. Multi-region two- stream r-cnn for action detection. In European Conference on Computer Vision, pages 744–759. Springer, 2016.

[12] Rui Hou, Chen Chen, and Mubarak Shah. Tube convolu- tional neural network (t-cnn) for action detection in videos. arXiv preprint arXiv:1703.10664, 2017.



### Test Result using UCF Sports Action Dataset

| Driving | 100.00  | 0.00  | 0.00    | 0.00    | 0.00   | 0.00  | 0.00    | 0.00   | 0.00    | 0.00  |
|---------|---------|-------|---------|---------|--------|-------|---------|--------|---------|-------|
| Golf    | 0.00    | 83.33 | 16.67   | 0.00    | 0.00   | 0.00  | 0.00    | 0.00   | 0.00    | 0.00  |
| Kicking | 0.00    | 0.00  | 100.00  | 0.00    | 0.00   | 0.00  | 0.00    | 0.00   | 0.00    | 0.00  |
| Lifting | 0.00    | 0.00  | 0.00    | 100.00  | 0.00   | 0.00  | 0.00    | 0.00   | 0.00    | 0.00  |
| Riding  | 0.00    | 0.00  | 0.00    | 0.00    | 100.00 | 0.00  | 0.00    | 0.00   | 0.00    | 0.00  |
| Run     | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 75.00 | 25.00   | 0.00   | 0.00    | 0.00  |
| SkateB. | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00  | 100.00  | 0.00   | 0.00    | 0.00  |
| Swing   | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00  | 0.00    | 100.00 | 0.00    | 0.00  |
| SwingB. | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00  | 0.00    | 0.00   | 100.00  | 0.00  |
| Walk    | 0.00    | 14.29 | 0.00    | 0.00    | 0.00   | 0.00  | 28.57   | 0.00   | 0.00    | 57.14 |
|         | Driving | Golf  | Kicking | Lifting | Riding | Run   | SkateB. | Swing  | SwingB. | Walk  |



| CNN base net | Time on 10 Frames (ms) | Time on 24 Frames (ms) |  |  |
|--------------|------------------------|------------------------|--|--|
| VGG16        | 103.65                 | 239.04                 |  |  |
| InceptionV3  | 78.40                  | 192.02                 |  |  |

SBGAR [3] model using InceptionV3 as feature extractor and 10 input frames was 108.53 ms.



- Motivation
- The state-of-the-art scheme
- Our solution
- Evaluations
- Why does it work
- References



## Why does our model work?



#### **On UCF Sports Dataset**

Our Model 0.928



## Why does our model work?



(a) Correctly predict an "other 2-pointer success" event on Basketball Dataset.



(b) Correctly predict a "Steal Success" event on Basketball Dataset.



## Why does our model work?



(c) Correctly predict a "Kicking" event on UCF Sports Action Dataset.



(d) Incorrectly predict a "Walking" event as "Golf" on UCF Sports Action Dataset.



- [1] Jeff Donahue, et al., "Long-term recurrent convolutional networks for visual recognition and description," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2625–2634.
- [2] Ibrahim, Moustafa, et al., "A Hierarchical Deep Temporal Model for Group Activity Recognition." Computer Vision and Pattern Recognition. 2016
- [3] Li, Xin, and Mooi Choo Chuah. "SBGAR: Semantics Based Group Activity Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (ICCV). 2017.
- [4] Heng Wang, Alexander Kla ser, Cordelia Schmid, and Cheng-Lin Liu. Action recognition by dense trajectories. In CVPR, 2011.
- [5] Du Tran, Lubomir D Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. C3d: generic features for video analysis. CoRR, abs/1412.0767, 2(7):8, 2014.
- [6] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for multiple-instance learning. In Advances in neural information processing systems, pages 577–584, 2003.
- [7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual recognition and description. In ICCV, pages 2625–2634, 2015.
- [8] Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija, Alexander Gorban, Kevin Murphy, and Li Fei-Fei. Detecting events and key actors in multi-person videos. ICCV, 2016.
- [9] Georgia Gkioxari and Jitendra Malik. Finding action tubes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 759–768, 2015.
- [10] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. Learning to track for spatio-temporal action local- ization. In Proceedings of the IEEE international conference on computer vision, pages 3164–3172, 2015.
- [11] Xiaojiang Peng and Cordelia Schmid. Multi-region two- stream r-cnn for action detection. In European Conference on Computer Vision, pages 744–759. Springer, 2016.
- [12] Rui Hou, Chen Chen, and Mubarak Shah. Tube convolu- tional neural network (t-cnn) for action detection in videos. arXiv preprint arXiv:1703.10664, 2017.

