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Abstract— Nowadays, autonomous driving cars have become
commercially available. However, the safety of a self-driving car
is still a challenging problem that has not been well studied.
Motion prediction is one of the core functions of an autonomous
driving car. In this paper, we propose a novel scheme called
GRIP which is designed to predict trajectories for traffic agents
around an autonomous car efficiently. GRIP uses a graph to
represent the interactions of close objects, applies several graph
convolutional blocks to extract features, and subsequently uses
an encoder-decoder long short-term memory (LSTM) model
to make predictions. The experimental results on two well-
known public datasets show that our proposed model improves
the prediction accuracy of the state-of-the-art solution by 30%.
The prediction error of GRIP is one meter shorter than existing
schemes. Such an improvement can help autonomous driving
cars avoid many traffic accidents. In addition, the proposed
GRIP runs 5x faster than the state-of-the-art schemes.

I. INTRODUCTION

In the past few years, thanks to technology advancement in
the fields of computer vision, sensor signal processing, and
hardware designing, etc., autonomous driving has gone from
“may be possible” to “commercially available”. However,
two traffic accidents caused by autonomous driving cars from
Tesla and Uber in 2018 raised people’s concern about the
safety of self-driving vehicles. Thus, it is critically important
to improve the performance of the intelligent algorithms
running on autonomous driving cars. Prediction of the future
trajectories of the surrounding objects, e.g., vehicles, pedes-
trians, bicycles, etc., is one of such intelligent algorithms.
Experts argue that we can avoid such a traffic accident if
each autonomous driving car involved could precisely predict
the locations of its surrounding objects.

Nevertheless, accurately predicting the motion of sur-
rounding objects is an extremely challenging task, consid-
ering that there are so many factors that affect the future
trajectory of an object. Prior works [1], [2], [3], [4], [5]
proposed to predict future locations by recognizing maneuver
(change lanes, brake, or keep going, etc.). However, these
methods fail to predict the positions of objects accurately
when they recognize the type of maneuver wrongly. Such
an issue happens when a scheme makes a prediction only
based on sensors like GPS that misses visual clues, e.g.,
turn signals. Then, Karasev et al. [6] proposed to predict the
motion of pedestrians by modeling their behaviors as jump-
Markov processes. Even though they claimed that they could
predict the route of an observed pedestrian, the proposed
method requires a semantic map and one or several goals of
the pedestrian, which is not useful in the autonomous driving
scenario because an autonomous driving car cannot know

the destination of a pedestrian (or other objects) in advance.
Bhattacharyya et al. [7] tried to predict the bounding boxes of
objects in RGB camera frames by predicting future vehicle
odometry sequence. Yet, the predicted bounding boxes in
RGB frames still need to be mapped to the coordinate system
of the self-driving car. Otherwise, the self-driving car cannot
make a correct response to these predicted locations.

Besides, almost all of the schemes we discussed above
only consider the state of one predicted object, i.e., few of
them take the states of surrounding objects into account. We
argue that the motion states of surrounding objects are crucial
for motion prediction especially in the field of autonomous
driving.

Thus, in this paper, we propose a robust and efficient
object trajectory prediction scheme for autonomous driving
cars, namely GRIP, that can infer future locations of nearby
objects simultaneously and is trainable end-to-end.

In summary, our contributions of this paper include:
• A robust and efficient object trajectory prediction

scheme to precisely predict future locations of objects
surrounding an autonomous driving car.

• The proposed scheme considers the impact of inter-
object interactions on the motion.

• Extensive evaluation using two popular traffic datasets
show that our scheme achieves higher accuracy and runs
an order of magnitude faster than existing schemes.

The rest of this paper is organized as follows. In Section
II, we briefly discuss related work followed by the problem
formulation in Section III. In Section IV, we describe our
proposed object trajectory prediction scheme and implemen-
tation details. We report our experimental results in Section
V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

Much work has been done on object trajectory prediction,
but few of them considers the impact of nearby objects.
In recent years, researchers have realized this issue and
started exploring possible solutions. Thus, here we merely
summarize the more recent works that take inter-object
interactions into account.

Luo et al. proposed a convolutional network for fast
object detection, tracking and motion forecasting in [8]. Their
model takes a series of bird’s eye view LiDAR data as input
and processes 3D convolutions across space and time. Then,
they add two extra branches of convolutional layers, one
of them calculates the probability of being a vehicle at a
given location and another predicts the bounding box over



the current frame as well as several frames in the future. They
argue that such a structure is able to forecast motion because
the model takes multiple frames as input and can learn
velocity and acceleration features. However, the forecasting
branch simply takes the 3D convolutional feature map as an
input, so visual features of all objects are represented in the
same feature map. In this case, the model will lose track
of objects and hence cannot perform well in a scene that
consists of crowded objects.

In addition, Deo et al. [9], [10] proposed a unified frame-
work for surrounding vehicles’ maneuver classification and
motion prediction on freeways. They first use an LSTM
model to represent the track histories and relative positions
of all observed cars (the one being predicted and its nearby
vehicles) as a context vector. Then, they use this context
vector to do maneuver classification and use an LSTM to
predict the vehicle’s future position. Considering that the
LSTM model fails to capture the interdependencies of the
motion of all cars in the scene, they then enhance their
scheme by adding convolutional social pooling layers in [11].
Such a model indeed improves the accuracy of future motion
prediction, because it has access to the motion states of
surrounding objects and their spatial relationships. Although
all of these models take the trajectory histories of all objects
in the scene as their inputs, they merely predict the trajectory
of one specific car (the one in the middle position) each
time. Hence, these existing approaches require intensive
computation power if they want to predict trajectories of
all surrounding objects which is highly inefficient especially
for autonomous driving cars scenarios. In addition, these
schemes are maneuver based, so wrong classification of
the maneuver type will negatively impact the trajectory
prediction.

III. PROBLEM FORMULATION

Before introducing our proposed scheme, we would like
to formulate the trajectory prediction problem as one which
estimates the future positions of all objects in a scene based
on their trajectory histories. Specifically, the inputs X of
our model are trajectory histories (over th time steps) of all
observed objects:

X = [p(1), p(2) · · · , p(th)] (1)

where,

p(t) = [x
(t)
0 , y

(t)
0 , x

(t)
1 , y

(t)
1 , · · · , x(t)n , y(t)n ] (2)

are the co-ordinates of all observed objects at time t, and
n is the number of observed objects. This format is the
same as what Deo et al. defined in [9] and [11]. Global
coordinates are used here. Using relative measurement in
the ego-vehicle-based coordinate system will improve the
prediction accuracy, but will be left for future work.

Considering that we feed track histories of all observed
objects into the model, we argue that it makes more sense to
predict future positions for all of them simultaneously for an
autonomous driving car. Thus, instead of only predicting the

position of one particular object as done in [9] and [11], the
outputs Y of our proposed model are the predicted positions
of all observed objects from time step th + 1 to th + tf in
the future:

Y = [p(th+1), p(th+2), · · · , p(th+tf )] (3)

where p(t) is the same as equation (2) and tf is the predicted
horizon.

IV. PROPOSED SCHEME

To solve the limitations of existing approaches, we propose
a novel deep learning model for object trajectory prediction
in this section. Our model, illustrated in Figure 1, consists of
three components: (1) Input Preprocessing Model, (2) Graph
Convolutional Model, and (3) Trajectory Prediction Model.

A. Input Preprocessing Model
1) Input Representation:
Before feeding the trajectory data of objects into our

model, we convert the raw data into a specific format for
subsequent efficient computation. Assuming that n objects
in a traffic scene were observed in the past th time steps,
we represent such information in a 3D array Finput with a
size of (n × th × c) (as shown in Figure 1). In this paper,
we set c = 2 to indicate x and y coordinates of an object.
All coordinates are normalized to the range of (−1, 1).

2) Graph Construction:
Considering that, in the autonomous driving application

scenario, the motion of an object is profoundly impacted
by the movements of its surrounding objects. This is highly
similar to people’s behaviors on a social network (one person
is usually to be impacted by his/her friends). This inspires us
to represent the inter-object interaction using an undirected
graph G = {V,E} as what researchers have done for a social
network.

In this graph, each node in node set V corresponds to an
object in a traffic scene. Considering that each object may
have different states at different time steps, the node set V
is defined as V = {vit|i = 1, · · · , n, t = 1, · · · , th}, where
n is the number of observed objects in a scene, and th is the
observed time steps. The feature vector vit on a node is the
coordinate of ith object at time t.

At each time step t, objects that have interactions should
be connected with edges. In the autonomous driving ap-
plication scenario, such an interaction happens when two
objects are close to each other. Thus, the edge set E is
composed of two parts: (1) The first part describes the
interaction information between two objects in spatial space
at time t. We call it a “spatial edge” and denote it as
ES = {vitvjt|(i, j ∈ D)}, where D is a set in which objects
are close to each other. In this paper, we define that two
objects are close if their distance is less than a threshold
of Dclose. In Figure 1, we demonstrate this concept on
“Raw Data” using two blue circles with a radius of Dclose.
All objects within the blue circle are regarded as close to
the one located in the middle of the circle. Thus, the top
object has three close neighbors, and the lower one only has



Fig. 1: The architecture of the proposed Scheme.

one neighbor. (2) The second part is the inter-frame edges,
which represents the historical information frame by frame
in temporal space. Each observed object in one time-step is
connected to itself in another time-step via the temporal edge
and such edges are denoted as EF = {vitvi(t+1)}. Thus, all
edges in EF of one particular object represent its trajectory
over time steps.

To make the computation more efficient, we represent this
graph using an adjacency matrix A = {A0, A1}, where A0 is
an identity matrix I representing self-connections in temporal
space, and A1 is a spatial connection adjacency matrix. Thus,
at any time t,

A0[i][j](orA1[i][j]) =

{
1, if edge 〈vit, vjt〉 ∈ E
0, otherwise (4)

Both A0 and A1 have a size of (n× n), where n equals to
the number of observed objects in a scene.

B. Graph Convolutional Model
The Graph Convolutional Model consists of several con-

volutional layers as well as graph operations. These convolu-
tional layers are designed to capture useful temporal features,
e.g., motion pattern of one object, and graph operations to
handle the inter-object interaction in spatial space. Thus,
as shown in Figure 1 (5 convolutional layers and 5 graph
operation layers are illustrated), one graph operation layer is
added to the end of each convolutional layer in this Graph
Convolutional Model to process the input data temporally
and spatially alternatively.

1) Convolutional Layer: Given a preprocessed input data
Finput := RN×T×C , the model first passes it through a
convolutional layer to compute convolutional feature maps
fconv . We set the kernel size of convolutional layers to

(1× 3) to force them to process the data along the temporal
dimension (second dimension). Appropriate paddings and
strides are added to make sure that each layer has an output
feature map with expected size.

2) Graph Operation Layer: Then, we feed the generated
convolutional feature maps fconv to a graph operation layer
to take the interactions of surrounding objects into account.
The graph operation involves multiplying normalized version
of matrix A with fconv using the following formula:

fgraph =

1∑
j=0

Λ
− 1

2
j AjΛ

− 1
2

j fconv (5)

where A is the adjacency matrix we constructed in subsection
IV-A.2 and Λj is computed as:

Λii
j =

∑
k

(Aik
j ) + α (6)

Λ− 1
2AΛ− 1

2 is a normalized version of A, which is used
to make sure that the value range of feature maps remain
unchanged after performing the graph operations.We set
α = 0.001 to avoid empty rows in Aj .

C. Trajectory Prediction Model
This model predicts the future trajectories for all observed

objects in a scene. The Trajectory Prediction Model is an
LSTM encoder-decoder network that takes the computed
output of the Graph Convolutional Model fgraph as input.
The output of the graph convolutional model is fed into the
encoder LSTM at each time step. Then, the hidden feature
of the encoder LSTM, as well as coordinates of objects
at the previous time step, are fed into a decoder LSTM
to predict the position coordinates at the current time step.



Such a decoding process is repeated several times until the
model predicts positions for all expected time steps (tf ) in
the future.

D. Implementation Details

Our scheme is implemented using Python Programming
Language and PyTorch Library [12]. We report the imple-
mentation details of our scheme and the settings of important
parameters as follows.

Input Preprocessing Model: In this paper, we process a
traffic scene within 180 feet (± 90 feet). All objects within
this region will be observed and predicted in the future.
While constructing the graph, we consider two objects are
close if their distance is less than 25 feet (Dclose = 25).
Thus, any pair of objects within 25 feet are connected using
a spatial edge, es ∈ ES . Please refer to our ablation study
in section V-C for more details.

Graph Convolutional Model: The Graph Convolutional
Model consists of 10 convolutional layers, denoted as
{conv2d i|i = 1, 2, · · · , 10}. All Conv2D layers have a
convolutional kernel with a size of (1 × 3). Among all of
these 10 Conv2D layers, we set stride = 2 for conv2d 5
and conv2d 8 to achieve some pooling effects, but use
stride = 1 for remaining layers. The output channel of the
first Conv2D is set to 64. We double the number of output
channels when stride = 2. Thus, the final output of the
Graph Convolution Model has 256 channels.

Each of these convolutional layers is followed by a graph
operation layer. Graph operation layers do not change the
size of features, and they share the same adjacency matrix.
To avoid overfitting, we randomly dropout features (0.5
probability) after each graph operation.

Trajectory Prediction Model: Both the encoder and
decoder of this prediction model are a two-layer LSTM. We
set the number of hidden units of these two LSTMs equals to
the output dimension (2×n, where n is the number of objects
and 2 is the x, y coordinates). The input of the encoder has
256 channels that are the same as the output of the Graph
Convolutional Model. We add a tanh activation function to
the output layers of both LSTMs to rescale the output to
range of (-1, 1).

Optimization: We train our model as a regression task at
each time. The overall loss can be computed as:

Loss =
1

tf

tf∑
t=1

losst (7)

=
1

tf

tf∑
t=1

∥∥Y t
pred − Y t

GT

∥∥2 (8)

where tf is the time step in the future (in Figure 1, tf = 3),
losst is the loss at time t, Ypred and YGT are predicted
positions and ground truth respectively. The model is trained
to minimize the Loss.

Training Process: We train the model using Stochastic
Gradient Descent (SGD) optimizer with 0.001 starting learn-
ing rate. The learning rate is reduced by multiplying with 0.1

once per 5 epochs until the loss becomes converged. As done
in [11], we set batch size = 128 during training.

V. EXPERIMENTS

We run our scheme on a desktop running Ubuntu 16.04
with 4.0GHz Intel Core i7 CPU, 32GB Memory, and a
NVIDIA Titan Xp Graphics Card.

A. Datasets
We evaluate our scheme on two well known trajectory

prediction datasets: NGSIM I-80 [13] and US-101 [14].
Both datasets were captured at 10 Hz over 45 minutes and
segmented into 15 minutes of mild, moderate and congested
traffic conditions. These two datasets consist of trajectories
of vehicles on real freeway traffic. Coordinates of cars in a
local coordinate system are provided.

We follow Deo et al. [9], [10], [11] to split these two
datasets into training and testing sets. One-fourth of the
data from each of the three subsets (mild, moderate, and
congested traffic conditions) are selected for testing. Each
trajectory is segmented into 8 seconds clips that the first 3
seconds are used as observed track history and the remaining
5 seconds are the prediction ground truth. To make a fair
comparison, we also do the same downsampling for each
segment by a factor 2 as Deo et al. did, i.e. 5 frames per sec-
ond. The code for dataset segmentation can be downloaded
from their Github 1.

B. Metrics
We use the same experimental settings and evaluation

metrics as [11] and [15]. In this paper, we report our results
in terms of the root of the mean squared error (RMSE) of
the predicted trajectories in the future (5 seconds horizons).
The RMSE at time t can be computed as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Y t
pred[i]− Y t

GT [i])2 (9)

where n is the number of observed (predicted) objects, Y t
pred

and Y t
GT are predicted results and ground truth at time t

correspondingly.

C. Ablation Study
In this subsection, we do two ablation studies about our

scheme:
(1) We defined a threshold Dclose in section IV-A.2.

Two objects within Dclose range are regarded as close to
each other. We first explore how this threshold impacts the
performance of our model. In Figure 2, we compare results
when Dclose is set to different values. One can see that
the prediction error when Dclose = 0 (when none of the
surrounding objects are considered, blue bars in Figure 2)
is higher than the results when Dclose > 0 (taking nearby
objects into account). Thus, considering the surrounding
object indeed helps our model make a better prediction.

1https://github.com/nachiket92/conv-social-pooling



TABLE I: Root Mean Square Error (RMSE) for trajectory prediction on NGSIM I-80 and US-101 datasets. Data are converted
into the meter unit. All results except ours are extracted from [11]. The smaller the value, the better.

Prediction
Horizon (s) CV V-LSTM C-VGMM

+ VIM [10]
GAIL-GRU

[15]
CS-LSTM(M)

[11]
CS-LSTM

[11] GRIP (4CS-LSTM) GRIP
(ALL)

1 0.73 0.68 0.66 0.69 0.62 0.61 0.37 (40%↑ -0.24) 0.64
2 1.78 1.65 1.56 1.51 1.29 1.27 0.86 (32%↑ -0.41) 1.13
3 3.13 2.91 2.75 2.55 2.13 2.09 1.45 (31%↑ -0.64) 1.80
4 4.78 4.46 4.24 3.65 3.20 3.10 2.21 (29%↑ -0.89) 2.62
5 6.68 6.27 5.99 4.71 4.52 4.37 3.16 (28%↑ -1.21) 3.60

Fig. 2: Comparison among various Dclose values.

Also, we notice that the prediction error increases when
Dclose increases from 25 feet (orange bars) to 50 feet (green
bars). This is because more objects are used to predict the
motion of an object with larger Dclose. In real life, a traffic
agent is more likely to be only impacted by its closest
objects. Thus, considering too many surrounding objects
does not help to improve the prediction accuracy. Based on
this observation, in this paper, we set Dclose = 25 feet as
our default setting unless specified otherwise.

(2) Given an input stream consisting of observed objects’
past trajectories, our model is able to predict future trajecto-
ries for all observed objects. Thus, in Figure 3, we report the
prediction error for objects at different locations, e.g., −60
or −45 feet, within the observed area. In Figure 3, traffic
agents are moving from location −90 to location 90 (left to
right).

Fig. 3: Prediction error at different locations.
First, one may notice that the prediction error decreases

from location −90 to −45, and then increases after −45.
Such an observation is obvious on the top 3 curves (“Future

5/4/3 second”). This is impacted by the clue information
from surrounding objects. Because objects are moving from
left to right in Figure 3, so objects located at 90 can only
observe objects behind them, while objects at −90 can only
see objects in front of them. Thus, prediction error at −90
is lower than the error at 90 concludes that front objects
are more important than behind objects for our trajectory
prediction model. This is also the reason why prediction error
increases after −45 (less and less front objects are observed
from left to right).

In addition, considering that predicting the motion of an
object in far future is difficult. Thus, in Figure 3, the error of
a long time prediction is higher than a shorter time prediction
(The “Future 5 second” curve is above the “Future 1 second”
curve).

D. Comparison Results
In this subsection, we compare our proposed scheme to

the following baselines (as done in [11]) and some existing
solutions:

• Constant Velocity (CV): This is a baseline that only uses
a constant velocity Kalman filter to predict trajectories
in the future.

• Vanilla LSTM (V-LSTM): A baseline that feeds a tack
history of the predicted object to an LSTM model to
predict a distribution of its future position.

• C-VGMM + VIM: In [10], Deo et al. propose a ma-
neuver based variational Gaussian mixture model with a
Markov random field based vehicle interaction module.

• GAIL-GRU: Kuefler et al. [15] use a generative ad-
versarial imitation learning model for vehicle trajectory
prediction. However, they use ground truth data for
surrounding vehicles as input during prediction phase.

• CS-LSTM (M): This is the model that an LSTM model
with convolutional social pooling layers proposed by
Deo et al. in [11]. A maneuver classier is included.

• CS-LSTM: A CS-LSTM model without the maneuver
classifier described in [11].

Comparison results are reported in Table I. Our model
can predict the trajectories for all observed objects simulta-
neously, while other schemes listed in Table I only predict
one specific object (in the middle position) each time. Thus,
to make a fair comparison, we compute the RMSE for the
same objects as other schemes and report the result in the
second column on the right side, “GRIP (4CS-LSTM)”, of
Table I. Compared to the existing state-of-the-art result (CS-
LSTM [11]), our proposed GRIP improves the prediction



performance by at least 28%. One may notice that, after 3
seconds in the future, the prediction error of GRIP is a half
meter (or longer) shorter than CS-LSTM [11]. We believe
that such an improvement can help an autonomous driving
car avoid many traffic accidents.

Besides, we also report RMSE results for all predicted
objects in the last column, “GRIP (ALL)”, of Table I. It is
worth highlighting that:

• All schemes in Table 1 take the same data (an object
in the middle position and its surrounding objects) as
their inputs. Our model predicts all observed objects
simultaneously, while others only predict the one in the
central location.

• As we discussed the ablation study subsection V-C,
objects located at the edge of the observed area, e.g.,
located at ±90 feet position, do not have enough sur-
rounding objects as input. Thus, the prediction errors
of these objects are high, which results in the results in
the column of “GRIP (ALL)” are higher than “GRIP”.

Even so, our proposed GRIP still achieves better prediction
results than all of the other existing solutions.

Then, compared the result of CS-LSTM(M) to CS-LSTM,
one can see that CS-LSTM makes slightly better prediction
than CS-LSTM(M). This is consistent with our argument
mentioned in Section II that a wrong classification of maneu-
ver type has an adverse effect on the trajectory prediction.

E. Computation Time
Computation efficiency is one of the important perfor-

mance indicators of an algorithm for autonomous driving
cars. Thus, we evaluate the computation time of our proposed
GRIP and report the results in Table II.

To make a fair comparison, we downloaded the code of
CS-LSTM [11] 2 and ran it on our machine to collect its com-
putation time. Both CS-LSTM and GRIP are implemented
using PyTorch.

TABLE II: Computation time

Scheme Predicted # Time (s)
128 batch

Time (s)
1 batch

CS-LSTM [11] 1000 0.29 35.13
GRIP 1000 0.05 6.33

From Table II, one can see that, when using 128 batch
size, CS-LSTM [11] needs 0.29s to predict trajectories for
1000 objects, while our proposed GRIP only takes 0.05s
(5.8x faster). In the autonomous driving application sce-
nario, considering the limited resources, we can only set
batch size = 1, so we report the results in the last column
of Table II. It shows that GRIP can still run 5.5 times faster
than CS-LSTM [11].

F. Visualization of Prediction Results
In Figure 4, we visualize several prediction results in mild,

moderate, and congested traffic conditions (from left to right)

2https://github.com/nachiket92/conv-social-pooling

using the datasets NGSIM I-80 and US-101. After observing
3 seconds of history trajectories, our model predicts the
trajectories over 5 seconds horizon in the future. From Figure
4, one can notice that:

• 1. From Figure 4a to Figure 4c, it is obvious that
green-dashed lines (CS-LSTM) are longer than yellow-
dashed lines (ours) and farther from the red-dashed lines
(ground truth). This proves that when feeding the same
history trajectories (all objects in the scene) to models,
our proposed GRIP makes a better prediction for the
central object than CS-LSTM.

• 2. In Figure 4b, our model precisely predicts the tra-
jectory of the top car even when it is going to change
lane in the next 5 seconds. In addition, the car in the
left lane is affected by the top car, and our model still
successfully predict the trajectory for the car in the left
lane.

• 3. Our proposed GRIP can predict all objects in the
scene simultaneously, while CS-LSTM can only predict
the one located in the middle. Especially, in Figure 4e,
we show a prediction result in a scene that involves
15 cars. In this scene, although some cars move slowly
(vehicles in the middle lane) while others move faster
(cars in the right lane), our proposed GRIP model is
able to predict their future trajectories correctly and
simultaneously.

Based on these observations from the visualized results,
we can conclude that our proposed scheme, GRIP, indeed
improves the trajectory prediction performance compared to
the existing methods. Even though Figure 4 only shows
straight high way scenario, our approach equally works for
curved roads.

VI. CONCLUSION

In this paper, we propose a novel scheme (GRIP) for
autonomous driving cars to predict object trajectories in the
future. The proposed model uses a graph to represent the
interaction among all close objects and employs an encoder-
decoder LSTM model to make predictions. Unlike some
existing solutions that only predict the future trajectory for
a single traffic agent each time, GRIP is able to predict
trajectories for all observed objects simultaneously. The
experimental results on two well-known public datasets show
that our proposed model achieves much better prediction
results than existing methods and run 5 times faster than
the state-of-the-art schemes.

In the near future, we would like to evaluate the proposed
model on other datasets, e.g. the Appollo dataset [16], in
which data is captured not only on a highway but also from
urban areas. Besides, we want to extend the proposed model
by adding visual data collected using RGB cameras, etc. to
further improve the prediction performance.

Acknowledgement: This work is partially supported by a
Qualcomm gift and a GPU donated by NVIDIA.



(a) (b) (c) (d) (e)

Fig. 4: Visualized Prediction Results. Blue rectangles are the cars located in the middle which is the car that CS-LSTM
[11] trys to predict. Black boxes are surrounding cars. Black-solid lines are the observed history, red-dashed lines are the
ground truth in the future, yellow-dashed lines are the predicted results (5 seconds) of our GRIP, and the green-dashed lines
are the predicted results (5 seconds) of CS-LSTM [11]. Region from −90 to 90 feet are observed areas.
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