
DAC: Data-free Automatic Acceleration of Convolutional Networks
Xin Li ∗†‡, Shuai Zhang∗†, Bolan Jiang†, Yingyong Qi†, Mooi Choo Chuah‡, and Ning Bi†

†Qualcomm AI Research
‡Department of Computer Science and Engineering, Lehigh University

xil915@lehigh.edu, shuazhan@qti.qualcomm.com, bjiang@qti.qualcomm.com

yingyong@qti.qualcomm.com, chuah@cse.lehigh.edu, nbi@qti.qualcomm.com

Abstract

Deploying a deep learning model on mobile/IoT devices
is a challenging task. The difficulty lies in the trade-off be-
tween computation speed and accuracy. A complex deep
learning model with high accuracy runs slowly on resource-
limited devices, while a light-weight model that runs much
faster loses accuracy. In this paper, we propose a novel de-
composition method, namely DAC, that is capable of factor-
izing an ordinary convolutional layer into two layers with
much fewer parameters. DAC computes the correspond-
ing weights for the newly generated layers directly from
the weights of the original convolutional layer. Thus, no
training (or fine-tuning) or any data is needed. The exper-
imental results show that DAC reduces a large number of
floating-point operations (FLOPs) while maintaining high
accuracy of a pre-trained model. If 2% accuracy drop is ac-
ceptable, DAC saves 53% FLOPs of VGG16 image classifi-
cation model on ImageNet dataset, 29% FLOPS of SSD300
object detection model on PASCAL VOC2007 dataset, and
46% FLOPS of a multi-person pose estimation model on
Microsoft COCO dataset. Compared to other existing de-
composition methods, DAC achieves better performance.

1. Introduction
Deep learning techniques have been applied to many ar-

eas of artificial intelligence, which affects our daily lives.
For example, smart surveillance video systems that can de-
tect and identify suspects help law enforcement personnel to
maintain a safer living environment. Self-driving cars lib-
erate drivers from steering wheels so that they can do more
meaningful things, e.g., read business news. As technol-
ogy for high-performance mobile or edge computing de-
vices continues to improve, more and more deep learning
models are deployed on these devices, e.g., face recognition
systems are used on cell phones to unlock screens, etc.

However, some of these AI tasks, e.g., voice recognition,
∗Xin Li and Shuai Zhang are equally contributed authors. This work is

done while Xin Li is interning at Qualcomm.

requires internet access, which means the model is not en-
tirely run on mobile/IoT devices. The major reason is that
most of the deep learning models with high accuracy run too
slowly on resource-limited devices. Many techniques to re-
duce the size of neural network models, e.g., model quanti-
zation of neural network models using fewer bits, have been
proposed to facilitate their implementations on mobile chips
[27, 25, 26, 24]. However, limited by current hardware
structure and the tolerance for model accuracy drop, most
of these quantization methods for real applications only fo-
cus on the 8-bit format. To further accelerate neural net-
work models, it is more important to reduce computation
complexity directly from the network architectures. Some
research [7, 20, 31, 16, 12, 13] has been done to simplify
these models before running them on mobile/IoT devices.
Such research can be roughly categorized into two classes:

Designing new light-weight network architectures:
MobileNet proposed by Howard et al. in [7, 20] is an ex-
cellent example. The model is based on a streamlined archi-
tecture that uses depthwise separable convolutions to build a
light weight deep neural network. The model achieves good
accuracy and runs fast on mobile devices. Similar with Mo-
bileNet, ShuffleNet [31, 17] is another type of light weight
network architecture, based on depthwise separable layers
for acceleration. However, these models require powerful
servers and massive data to tune the weights. This is not a
friendly solution to those who cannot access such resources.

Modifying an existing model to a slim version: An-
other solution is to produce a slimmer version of an exist-
ing model. Unfortunately, the training data in some cases
is exclusively available to the original designer of a model,
which prevents other researchers from re-training the model
after modification. Besides, it is costly and time-consuming
to train a model from scratch. Thus, compared to designing
new models and training them from scratch, accelerating an
existing model based on its pretrained weights is a better so-
lution. Network pruning and parameter decomposition are
two common methods for this purpose. Network pruning
is a practical tool for speeding up existing deep neural net-
works [18]. He et al. propose a channel pruning method

[6] that utilizes LASSO regression to prune the number of
the input channels in each convolutional layer. Even though
such network pruning scheme simplifies models, it still has
some weaknesses. Network pruning is based on the statisti-
cal results of a set of samples. Thus: (1) it still requires data
to discover which channel to prune, and (2) the accuracy of
the model drops after pruning because the statistical results
are not suitable for all data during testing. Louizos et al.
incorporate l0 relaxation [16] into the training loss function
to enforce compactness of network parameters. Thus, this
l0 pruning method should only be used during the training
process. Parameter decomposition is another way to sim-
plify an existing model. It is a layer-wise operation that de-
composes a layer into one or multiple smaller layers, either
having smaller kernel sizes or fewer channels. Although
there will be more layers after being decomposed, the total
number of weights and the computational complexity will
be reduced. The decomposition methods only use the pre-
trained weights of a layer, with the fact that most neural
network models have much redundant parameters and can
be largely simplified with low rank constraints. In this pa-
per, we propose a new parameters decomposition method
which does not require access to data or retraining.

The contributions of this paper are:
1. We propose a novel decomposition method that re-

places standard convolutional layers in a pre-trained model
with separable layers to significantly reduce the number of
FLOPs.

2. The newly generated model maintains high accuracy
without using any data and training process.

3. The experimental results on three computer vision ap-
plication scenarios show that DAC maintains high accura-
cies even when a vast amount of FLOPs is trimmed.

The rest of this paper is organized as follows. Some
related works are summarized in section 2. In section 3,
we describe the architecture of DAC and our factorization
method. The experimental results are reported in section 4,
followed by the conclusion in Section 5.

2. Related Work
Much work has been done to do parameter decomposi-

tion. In this section, we will discuss some prior work that
decomposes convolutional layers. To simplify the descrip-
tion, we assume the weight of the convolutional layer that
we are going to decompose has a size of (n×kw×kh× c),
where n is the number of kernels, kw and kh are the spa-
tial width and height of a kernel respectively, and c is the
number of channels of the input feature map.

First, Jaderberg et al. [8] propose a spatial decomposi-
tion method. The method decomposes a convolutional layer
with (n×kw×kh× c) kernel size into two layers. One has
horizontal filters with (c′ × kw × 1 × c) kernel size and
the other consists of vertical filters with (n × 1 × kh × c′)

kernel size. In theory, this method indeed reduces parame-
ters. However, running the decomposed model on a mobile
device that has limited resources does not result in a signifi-
cant speed up. This is due to the caching behavior of data. A
feature map is horizontally (or vertically) loaded into a con-
tinuous block of memory. When we compute convolution
using horizontal (vertical) filters, we access the memory se-
quentially. There is no impact on running time. However, if
we compute the convolution using vertical (horizontal) fil-
ters, we cannot access memory sequentially any more which
results in more cache misses and hence longer computation
time.

Then, Zhang et al. describe a channel decomposition
method in [32]. It decomposes a convolutional layer with
(n × kw × kh × c) kernel size into a convolutional layer
with fewer output channels and a pointwise convolutional
layer. The newly generated convolutional layer has (c′ ×
kw × kh × c) kernel size, and the pointwise convolutional
layer has (n × 1 × 1 × c′) kernel size. Notice that the first
layer is also an ordinary convolutional layer, so it does not
improve the situation fundamentally.

Direct tensor decomposition methods including CP de-
composition [11] and Tucker decomposition [9] are also ap-
plied to accelerate networks. After these tensor decompo-
sitions, one convolution layer will be factorized into 3 or 4
small layers with a bottleneck structure, opposite with [20]
architecture. One big disadvantage of these tensor decom-
position methods is that the depth of network architecture
is tripled (3x) compared to the original model, thus it in-
creases the memory access cost (MAC) and largely offset
the gains from the reduction of FLOPs, as claimed in [17].

There are also many network decomposition works using
low rank constraints in training process or solving layer-
wise regression problem with data samples [23, 2]. But
all these methods require the access of sufficient data from
training/test domain.

Our research focus is based on the real application sce-
nario with limited access of data. In this paper, we pro-
pose a novel data-free convolutional layers decomposition
method and compare its performance to two most related
works [32, 8].

3. Proposed Solution

The intuition of our proposed scheme is that the depth-
wise + pointwise combination runs efficiently on mobile de-
vices has already been proven by MobileNet [7]. It will be
useful if we can convert an ordinary convolutional layer into
such a structure and compute their weights from the original
layer directly. The feasibility of decomposing the weights
of a convolutional layer has been mathematically proved by
Zhang et al. [32].

Convolutional Layer

Wf

Hf

c

Input Feature Map

c

We
igh
ts Bias

kh
kw kw kw

n

1
1

Convolutional Layer (n x kw x kh x c)

Wf
’’

Hf’’

n

Output Feature Map

Depthwise Separable Layer

Wf

Hf

c

Input Feature Map
(Wf x Hf x c)

kw

kh
1

r

r

r

rC

Weights

Depthwise Layer
(rC x kw x kh x 1)

Wf
’

Hf’
rC

Intermediate Feature Map
(Wf

’ x Hf’ x rC)

1
1

1

n

We
igh
ts

Bias

rC

1

1 1

Pointwise Layer
(n x 1 x 1 x rC)

Wf
’’

Hf’’

n

Output Feature Map
(Wf

’’ x Hf’’ x n)

DAC

(indicates weights assignment)

Td Ts

Figure 1. The architecture of our proposed DAC. An input feature map consists of c channels (in this figure, c = 3) is marked with different
colors. In “Depthwise Layer”, kernels are only applied on the channel with the same color. Thus, each channel is processed by r kernels.

3.1. Convolutional Layer Factorization

In this section, we propose a novel factorization method
for convolutional layers. Figure 1 shows the details of our
scheme. An ordinary convolutional layer with the shape of
(n× kw × kh × c) is decomposed into two layers. One is a
depthwise layer with the shape of (rC×kw×kh×1), and the
other is a pointwise layer with the shape of (n×1×1×rC),
where rC = r∗c and r is a factor used to balance the trade-
off between model compression ratio and accuracy drop.
There is no bias in the depthwise layer, and the bias vector
in the original layer is assigned to the pointwise layer.

Even though our scheme is inspired by MobileNet, it is
worth highlighting the differences between MobileNet and
DAC. DAC has no non-linear layers (batch normalization
layers and activation layers) between the depthwise and the
pointwise layers. The absence of non-linear layers makes
DAC quantization friendly and hence suitable for further
hardware acceleration, which Sheng et al. [21] have already
experimentally verified.

3.2. Weights Decomposition

Once a convolutional layer is factorized, we want to
compute weights for the newly generated layers (a depth-
wise and a pointwise layer) from the original weights di-
rectly. We assume T is the trained weights of the original
convolutional layer, and its shape is (n× kw × kh× c). We
denote Td ∈ D := RrC×kw×kh×1 as the weights of the
depthwise layer and Ts ∈ S := Rn×1×1×rC as the weights
of the pointwise layer. Then, the objective function of fac-
torizing a convolutional layer is:

min
Td∈D,Ts∈S

‖T − Ts ∗ Td‖2F , (1)

where operator ∗ is the combination of convolution opera-
tions of the depthwise and the pointwise layer, and ‖‖F is
the Frobenius norm for tensor/matrix. Thus

min
Td∈D,Ts∈S

‖T − Ts ∗ Td‖2F

= min
Td∈D,Ts∈S

C∑
i=1

‖Ti − Tsi ∗ Tdi‖2F

=

C∑
i=1

min
Tdi,Tsi

‖Ti − Tsi ∗ Tdi‖2F

=

C∑
i=1

min
Si,Di

‖Mi − SiDi‖2F .

Here matrices Mi, Si and Di are transformed from tensors
Ti, Tsi and Tdi respectively.

According to the SVD theory, the solution of minimiza-
tion problem min

Si,Di

‖Mi − SiDi‖2F is the singular matrices

with rank r, where the top r singular values can be merged
into either Si or Di. Also, Frobenius norm ‖‖F can be de-
fined as ‖‖2,2 induced by L2 vector norm, so the above DAC
minimization objective function can be considered as

min
Td∈D,Ts∈S

‖T − Ts ∗ Td‖2F

= min
Td∈D,Ts∈S

sup
‖F‖2 6=0

‖(T − Ts ∗ Td)F‖2
‖F‖2

,

where F is the input feature maps and ‖F‖2 is the vector L2

norm. In this formula, it minimizes the output feature maps
with approximation error measured in Euclidean space and
the constraint of the decomposition ‘rank’ r (the factor used
to balance the trade-off between model compression ratio
and accuracy drop). The process of weights decomposition
is described in Algorithm 1.

Algorithm 1: DAC Weights Decomposition
Input : Weights of a convolutional layer: T ∈ Rn×kw×kh×c;

Decomposition Rank: r.
Output: Weights of the depthwise layer: Td ∈ RrC×kw×kh×1;

Weights of the pointwise layer: Ts ∈ Rn×1×1×rC

1 begin
2 list d ∈ Rc×r×kw×kh×1 ← ∅
3 list s ∈ Rn×1×1×r×c ← ∅
4 for i ∈ c do
5 Ti ← T [:, :, :, i] ∈ Rn×kw×kh

6 Mi ← Reshape(T i, (n, kw × kh)) ∈ Rn×kwkh

7 Di, Si ← Decompose(Mi, r)

8 list d[i, :, :, :, :]← Di ∈ Rr×kw×kh×1

9 list s[:, :, :, :, i]← Si ∈ Rn×1×1×r

10 Td← Reshape(list d, (r × c, kw, kh, 1))
11 Ts← Reshape(list s, (n, 1, 1, r × c))

12 function Decompose(M, r)
13 begin
14 U, Sigma, V ← SV D(M)

15 Ur ← U [:, : r] ∈ Rn×r

16 V r ← V [: r, :] ∈ Rr×kwkh

17 Sr ← Sigma[: r, : r] ∈ Rr×r

18 D ← Reshape(V r, (r, kw, kh, 1))
19 S ← Ur Sr
20 S ← Reshape(S, (n, 1, 1, r))
21 return D,S

3.3. Computation Reduction

We consider the original convolutional layer with (n ×
kw × kh × c) kernel size takes a (Wf × Hf × c) feature
map F as an input and produces a (Wf ×Hf × n) feature
map G, where Wf and Hf are the spatial width and height
of the feature maps. Here, we assume the output feature
map has the same spatial size as the input for simplification.
Then, the computation cost of the convolutional layer is:
Wf ×Hf × c× kw × kh × n.

The computation cost depends on the number of input
channels c, the number of output channels n, the kernel size
kw×kh and the input features map size Wf×Hf . After de-
composition, the newly generated depthwise and pointwise
layer in total have the cost of Wf ×Hf × kw × kh × rC +
Wf ×Hf × rC ×n, where rC = r ∗ c and the reduction in
computation is

Wf ×Hf × kw × kh × rC +Wf ×Hf × rC × n

Wf ×Hf × c× kw × kh × n

=
r

n
+

r

kwkh

4. Experimental Results
To prove the universality of our proposed scheme, we ap-

ply DAC to three major application scenarios in the field of
Computer Vision: (1) Image Classification, (2) Object De-
tection, and (3) Multi-person Pose Estimation. We imple-
ment our scheme using Python and Keras Library [4] with
Tensorflow backend [1].

4.1. Datasets

Four datasets are used in this paper:
CIFAR-10 dataset: The CIFAR-10 dataset [10] consists

of 50,000 training images and 10,000 test images in 10 cat-
egories. It is a small dataset, from which we can quickly get
results after tuning parameters. Thus, we use it for ablation
study to get some insights about DAC, e.g., the impacts of
using different ranks or decomposing different layers.

ImageNet dataset: The ImageNet dataset [19] has
50,000 ILSVRC validation images in 1,000 object cate-
gories. We use this ILSVRC validation subset to evaluate
the performance of DAC in the task of image classification.

Pascal VOC2007 dataset: For object detection task,
Pascal VOC2007 dataset [5] is used. It consists of 4,952
testing images for object detection. The bounding box and
label of each object from twenty target classes have been
annotated. Each image has one or multiple objects.

Microsoft COCO dataset: The Microsoft COCO
dataset [14] is used to evaluate the performance of DAC in
the task of multi-person pose estimation. We use the COCO
2017 keypoints subset which consists of 5,000 validation
images and 40K testing images.

4.2. Ablation Study

Here, we use a pre-trained CIFAR-VGG model i, a
simple Convolutional Neural Network, on the CIFAR-10
dataset as our original model. Figure 2 shows the architec-
ture of the CIFAR-VGG. In total, the CIFAR-VGG model
has 13 convolutional layers. The original model (trained on
CIFAR-10 training subset) achieves 93.6% on CIFAR-10
testing subset.

3x
3
Co

nv
,6
4

3x
3
Co

nv
,6
4

3x
3
Co

nv
,1
28

3x
3
Co

nv
,1
28

3x
3
Co

nv
,2
56

3x
3
Co

nv
,2
56

3x
3
Co

nv
,2
56

3x
3
Co

nv
,5
12

3x
3
Co

nv
,5
12

3x
3
Co

nv
,5
12

3x
3
Co

nv
,5
12

3x
3
Co

nv
,5
12

3x
3
Co

nv
,5
12

Fl
at
te
n

FC
,5
12

FC
,1
0

Po
ol
/2

Po
ol
/2

Po
ol
/2

Po
ol
/2

Po
ol
/2

32
x3
2

16
x1
6

8x
8

4x
4

2x
2

51
2

Figure 2. The architecture of the CIFAR-VGG.

First, we decompose a single convolutional layer to ex-
plore the impact of decomposing different layers. Table 1
shows the details of testing accuracy when applying varying
ranks (rank 1 to rank 5) decomposition on different layers of
CIFAR-VGG model. Each time, we only modify one layer.

ihttps://github.com/geifmany/cifar-vgg

All results are collected using decomposed weights directly
(no access to data or any training process).

Table 1. Testing Accuracy on CIFAR-10 dataset when decompos-
ing different layers of CIFAR-VGG model using variant ranks.

Accuracy (%)
Original Model 93.6

Decomposed Layer Rank1 Rank2 Rank3 Rank4 Rank5
conv2d 1 18.6 76.4 86.7 91.9 92.8
conv2d 2 39.1 86.5 91.6 92.7 93.2
conv2d 3 54.0 87.8 92.6 93.2 93.4
conv2d 4 31.4 83.7 91.8 92.8 93.2
conv2d 5 80.1 90.2 92.6 93.1 93.8
conv2d 6 84.3 90.9 92.8 93.3 93.4
conv2d 7 66.0 89.5 92.6 93.0 93.3
conv2d 8 83.2 91.1 92.6 93.0 93.2
conv2d 9 91.2 93.1 93.3 93.4 93.5
conv2d 10 91.7 93.2 93.3 93.3 93.4
conv2d 11 93.1 93.4 93.3 93.4 93.4
conv2d 12 93.3 93.4 93.4 93.4 93.5
conv2d 13 92.9 93.4 93.4 93.4 93.5

From Table 1, we gain two insights: (a) Decomposing
first few layers of a model causes large drops in accuracy
(75% drop when rank 1 decomposition is applied on layer
conv2d 1), while decomposing last few layers has a smaller
impact on the accuracy (less than 1% drop when rank 1 de-
composition is applied on layer conv2d 13). (b) Decompos-
ing a layer using a larger rank helps to maintain the accu-
racy. This can be observed by comparing different columns
in the same row. These two insights are consistent with our
intuition. (a) Decomposing a layer generates tiny errors. If
such errors occur at the beginning of a model, the errors
will accumulate to bigger errors at the final prediction. (b)
Compared to smaller ranks, larger ranks generate more pa-
rameters in the depthwise layers. Thus, the newly generated
layers have more possibility of replicating the performance
of the original layer.

Next, we explore the performance of DAC when multiple
convolutional layers are decomposed. We decompose the
model with two opposite directions: (1) from the last layer
to the first one, and (2) from the first layer to the last one. To
simply the experiment, we use the same rank to decompose
all chosen layers. The experimental results are reported in
Figure 3. First, one can quickly notice that most decompo-
sition cases (solid points) achieve high accuracies (higher
than 91.6% or 2% drop). Second, after saving 42% FLOPs,
DAC still achieves 92.7% accuracy (drops less than 1%).
Both of these prove that our proposed DAC has the capabil-
ity of maintaining accuracy when the number of FLOPs is
substantially reduced.

Besides, in Figure 3, red-star points (Rank 5) achieve
high accuracies. If we compare the solid (open) red-star
marks to other solid (open) marks, we can notice that the
above insights also hold in the case of decomposing mul-
tiple convolutional layers. Ten (eight) out of twelve Rank
5 decomposition cases (solid red-star spots) drop accuracy

9/20/2018 temp-plot.html

file:///Users/xincoder/Documents/Research/12.Model_compression/VGG_cifar10/ReadMe/temp-plot.html 1/1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Saved FLOPs Ratio (%)

A
c
c
u
r
a
c
y
 (
%
)

42

9/20/2018 temp-plot.html

file:///Users/xincoder/Documents/Research/12.Model_compression/VGG_cifar10/ReadMe/temp-plot.html 1/1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
0

20

40

60

80

100

Export to plot.ly »

Last k layers (Rank1)

Last k layers (Rank2)

Last k layers (Rank3)

Last k layers (Rank4)

Last k layers (Rank5)

Accuracy = 92.6%

First k layers (Rank1)

First k layers (Rank2)

First k layers (Rank3)

First k layers (Rank4)

First k layers (Rank5)

Original Model (93.6%)

Saved FLOPs Ratio (%)

A
c
c
u
r
a
c
y
 (
%
)

52

9/20/2018 temp-plot.html

file:///Users/xincoder/Documents/Research/12.Model_compression/VGG_cifar10/ReadMe/temp-plot.html 1/1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
0

20

40

60

80

100

Export to plot.ly »

Last k layers (Rank1)

Last k layers (Rank2)

Last k layers (Rank3)

Last k layers (Rank4)

Last k layers (Rank5)

Accuracy = 92.6%

First k layers (Rank1)

First k layers (Rank2)

First k layers (Rank3)

First k layers (Rank4)

First k layers (Rank5)

Original Model (93.6%)

Saved FLOPs Ratio (%)

A
c
c
u
r
a
c
y
 (
%
)

52

9/20/2018 temp-plot.html

file:///Users/xincoder/Documents/Research/12.Model_compression/VGG_cifar10/ReadMe/temp-plot.html 1/1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
0

20

40

60

80

100

Export to plot.ly »

Last k layers (Rank1)

Last k layers (Rank2)

Last k layers (Rank3)

Last k layers (Rank4)

Last k layers (Rank5)

Accuracy = 92.6%

First k layers (Rank1)

First k layers (Rank2)

First k layers (Rank3)

First k layers (Rank4)

First k layers (Rank5)

Original Model (93.6%)

Saved FLOPs Ratio (%)

A
c
c
u
r
a
c
y
 (
%
)

52

Figure 3. Classification accuracy on the CIFAR-10 dataset. Each
curve has 12 points that correspond to different numbers of decom-
posed layers (2 to 13 layers from left to right). Solid spots indicate
the cases that last few layers are decomposed (layer “conv2d 13”
included). Open spots are the cases that first few layers are decom-
posed (“conv2d 1” layer included).

by less than 2% (1%). The worst solid red-star case that
achieves 91.2% (accuracy drops 2.4%) is caused by the de-
composition of the first layers of the model (first insight
discussed above). It is worth highlighting that these decom-
posed models that maintain high accuracies are generated
by DAC without accessing data or training process.

4.3. Image Classification

For the task of image classification, we use the VGG16
model proposed by Simonyan et al. in [22]. It includes 12
(3x3) convolutional layers. We downloaded a model ii pre-
trained on ImageNet dataset. All convolutional layers but
the first one are decomposed considering the first insight
we got in our ablation study.
Table 2. Top-5(Top-1) Validation Accuracy on ImageNet dataset

Top-5(Top-1) Accuracy (%)
VGG16 [22] (Baseline) 88.9(69.2)
Method Saved 40% Saved 50% Saved 60%
Channel Decomp. [32] 86.5(65.6) 74.4(48.7) 43.3(20.8)
Spatial Decomp. [8] 88.6(68.5) 86.3(65.0) 78.0(52.5)
DAC (Ours) 88.6(68.5) 87.5(66.8) 84.7(62.5)

Here we compare our approach with two schemes,
namely, the Filter Reconstruction Optimization proposed by
Jaderberg et al. in [8] (Spatial Decomp. in Table 2) and
the Channel Decomposition method proposed by Zhang et
al. in [32] (Channel Decomp. in Table 2). Spatial De-
composition is the one that does not need data and train-
ing like DAC as we discussed in Section 2. Although the
Channel Decomposition requires some data, we can still
use the method as a filter reconstruction without accessing
any data and training process. We implemented these two
algorithms ourselves. For fair comparison, we choose ap-
propriate parameters for Channel Decomposition and Spa-
tial Decomposition, so that all schemes save roughly same

iihttps://github.com/fchollet/deep-learning-
models/releases/download/v0.1/vgg16 weights tf dim ordering tf kernels.h5

FLOPs. Given a rank r of DAC, the number of filters c′c in
the first newly generated layer in Channel Decomposition
can be computed using:

c′c = r ∗ c(n+ khkw)

ckhkw + n
(2)

and for Spatial Decomposition, the number of filters c′s in
the first newly generated layer is

c′s = r ∗ c(n+ khkw)

ckw + nkh
(3)

where n is the number of kernels in original convolutional
layer, kw and kh are the spatial width and height of a kernel
respectively, and c is the number of channels of the input
feature map.

Table 2 shows the accuracy of the model (after saving
40%, 50%, and 60% FLOPs respectively) on ImageNet val-
idation set. First, DAC maintains high accuracy on both
Top-1 and Top-5 accuracy even when a significant amount
of FLOPs are reduced. Second, compared to the Channel
Decomposition and Spatial Decomposition, DAC performs
much better. Especially when we saved 60% FLOPs, DAC
achieves 41.4% higher accuracy than Channel Decomposi-
tion and 6.7% higher accuracy than Spatial Decomposition.

4.4. Multi-person Pose Estimation

For the task of multi-person pose estimation, we use the
scheme proposed by Cao et al. [3]. Figure 4 is the architec-
ture extracted from their paper. After generating the feature
map F by a convolutional network (initialized by the first 10
layers of VGG-19 [22] and fine-tuned), the model is split
into two branches: the top branch predicts the confidence
maps, and the bottom branch predicts the affinity fields.

Figure 4. The model architecture figure extracted from [3].

We download an implementation of Cao’s model iii that
was pre-trained on Microsoft COCO dataset as our origi-
nal model. It achieves 57.9% average precision (AP) on the
validation subset of 2017 COCO keypoints challenge. This
model consists of six stages, which means t ∈ {2, 3, 4, 5, 6}
in Figure 4. Thus, the first stage (Stage 1) has 6 convolu-
tional layers (3x3 kernel size), and each of the following
stage (Stage 2 to Stage 6) includes 10 convolutional lay-
ers (7x7 kernel size). Based on the above two insights, we

iiihttps://github.com/anatolix/keras Realtime Multi-
Person Pose Estimation

decompose the model from the bottom to the top with vari-
ant ranks (from Rank20 to Rank3). Because the full rank
of a (3x3) convolutional kernel (in Stage 1) is 9, so we set
the maximum rank used to decompose these (3x3) convolu-
tional layers equals to 5 for a large compression ratio.

8/10/2018 temp-plot.html

file:///Users/xincoder/Documents/Research/11.Pose_estimation/ReadMe/old_result/temp-plot.html 1/1

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Original Model (57.9%)

Decompose last 1 stage

Decompose last 2 stages

Decompose last 3 stages

Decompose last 4 stages

Decompose last 5 stages

Decompose last 6 stages

AP = 55.9%

Saved FLOPs Ratio (%)

A
P
 (
%
)

46

Figure 5. Results on the Microsoft COCO dataset. Each curve
has 18 points that correspond to different ranks (Rank20 to Rank3
from left to right).

Figure 5 shows the experimental results. First, it is obvi-
ous that in the task of person pose estimation, the DAC also
maintains high accuracy without any retraining when large
amounts of FLOPs are saved. Our proposed DAC saves up
to 46% FLOPs when 2% AP drop is allowed. Second, for
each curve, the AP decreases with decreasing decomposi-
tion rank. This observation is consistent with the above sec-
ond insight. Then, we notice that “Decompose last 6 stages”
achieves similar results (similar saved ratios and APs) as
“Decompose last 5 stages” does. This can be explained as
follows: the “Decompose last 6 stages” includes Stage 1 in
which all decomposed convolutional layers (6 layers) have
(3x3) kernel size. Comparing to a convolutional layer with
(7x7) kernel size, these layers have much fewer parameters,
so decomposing them does not contribute much.

Table 3. Results on the COCO 2017 keypoint challenge
Mean Average Precision (%)

Openpose [3] (Original) 57.9
Method Saved 40% Saved 50% Saved 60%
Channel Decomp. [32] 25.9 5.0 0
Spatial Decomp. [8] 55.9 54.4 45.4
DAC (Ours) 56.7 55.6 52.5

Table 3 shows the accuracy of the model (after saving
40%, 50%, and 60% FLOPs respectively) on COCO 2017
keypoint challenge. The parameters of Channel Decompo-
sition and Spatial Decomposition are computed using Equa-
tion 2 and 3 correspondingly. Compared to Channel and
Spatial Decomposition, DAC achieves higher accuracy even
when a significant amount of FLOPs is reduced. After sav-
ing 60% FLOPs, Channel Decomposition cannot correctly
detect any person’s pose, while DAC can still achieve 7.1%
higher accuracy than Spatial Decomposition.

Figure 6 shows the visualized multi-person pose estima-

Figure 6. Visualized results on COCO dataset. The first row shows the results generated using the original weights, while the second row
shows the results created using the model that saves 50% FLOPs.

tion results on COCO dataset. It shows that after being de-
composed using DAC, the model still works pretty well.
There are only small changes observed. For example, the
decomposed model misses a leg of a person in the first ex-
ample (the second person on the right side) and the third
sample (the second person on the left side). Please refer to
our Appendix for more visualized results.

4.5. Object Detection

Next, we evaluate the performance of DAC in the task of
object detection using the Single Shot MultiBox Detector
(SSD) model proposed by Liu et al. [15]. Figure 7 shows
the framework of the SSD.

4 Liu et al.

300

300

3

VGG-16
through Conv5_3 layer

19

19

Conv7
(FC7)

1024

10

10

Conv8_2

512

5

5

Conv9_2

256
3

Conv10_2

256 256

38

38

Conv4_3

3

1

Image

Conv: 1x1x1024 Conv: 1x1x256
Conv: 3x3x512-s2

Conv: 1x1x128
Conv: 3x3x256-s2

Conv: 1x1x128
Conv: 3x3x256-s1

D
et

ec
tio

ns
:8

73
2

 p
er

 C
la

ss

Classifier : Conv: 3x3x(4x(Classes+4))

512

448

448

3

Image

7

7

1024

7

7

30

Fully Connected

YOLO Customized Architecture

N
on

-M
ax

im
um

 S
up

pr
es

si
on

Fully Connected

N
on

-M
ax

im
um

 S
up

pr
es

si
on

 D
et

ec
tio

ns
: 9

8
pe

r c
la

ss

Conv11_2

74.3mAP
 59FPS

63.4mAP
 45FPS

Classifier : Conv: 3x3x(6x(Classes+4))

19

19

Conv6
(FC6)

1024

Conv: 3x3x1024

S
S

D
Y

O
LO

Extra Feature Layers

Conv: 1x1x128
Conv: 3x3x256-s1

Conv: 3x3x(4x(Classes+4))

Fig. 2: A comparison between two single shot detection models: SSD and YOLO [5].
Our SSD model adds several feature layers to the end of a base network, which predict
the offsets to default boxes of different scales and aspect ratios and their associated
confidences. SSD with a 300 ⇥ 300 input size significantly outperforms its 448 ⇥ 448
YOLO counterpart in accuracy on VOC2007 test while also improving the speed.

box position relative to each feature map location (cf the architecture of YOLO[5] that
uses an intermediate fully connected layer instead of a convolutional filter for this step).
Default boxes and aspect ratios We associate a set of default bounding boxes with
each feature map cell, for multiple feature maps at the top of the network. The default
boxes tile the feature map in a convolutional manner, so that the position of each box
relative to its corresponding cell is fixed. At each feature map cell, we predict the offsets
relative to the default box shapes in the cell, as well as the per-class scores that indicate
the presence of a class instance in each of those boxes. Specifically, for each box out of
k at a given location, we compute c class scores and the 4 offsets relative to the original
default box shape. This results in a total of (c + 4)k filters that are applied around each
location in the feature map, yielding (c + 4)kmn outputs for a m⇥ n feature map. For
an illustration of default boxes, please refer to Fig. 1. Our default boxes are similar to
the anchor boxes used in Faster R-CNN [2], however we apply them to several feature
maps of different resolutions. Allowing different default box shapes in several feature
maps let us efficiently discretize the space of possible output box shapes.

2.2 Training

The key difference between training SSD and training a typical detector that uses region
proposals, is that ground truth information needs to be assigned to specific outputs in
the fixed set of detector outputs. Some version of this is also required for training in
YOLO[5] and for the region proposal stage of Faster R-CNN[2] and MultiBox[7]. Once
this assignment is determined, the loss function and back propagation are applied end-
to-end. Training also involves choosing the set of default boxes and scales for detection
as well as the hard negative mining and data augmentation strategies.

Figure 7. SSD architecture extracted from [15]
We use a model iv pre-trained on Pascal VOC2007 and

VOC2012 trainval subset. The model uses VGG-16 [22] as
its base net that has (300x300) input size. Ten extra convo-
lutional layers are added to the VGG-16 model to provide
extra information. In total, 18 (3x3) convolutional layers
and 5 (1x1) convolutional layers are used to generate multi-
scale feature maps for detection, and 12 (3x3) convolutional
layers are used to produce a fixed set of detection predic-
tions. This model achieves 76.5% on VOC2007 testing set.

There is no benefit in decomposing a convolutional layer
with (1x1) kernel size, so we only decompose those layers
with (3x3) kernel size. Furthermore, considering that de-
composing first layers causes large drops of accuracy, we do
not decompose the first convolutional layer of the model. To
simplify the description, we denote 18 layers (the first layer,

ivhttps://github.com/pierluigiferrari/ssd keras

conv1 1, is not decomposed) that generate multi-scale fea-
ture maps by “Feature Convolutional Layers (FL)” and 12
layers that produce detection predictions by “Detector Con-
volutional Layers (DL)”.

8/10/2018 temp-plot.html

file:///Users/xincoder/Documents/Research/13.Object_detection/ReadMe/temp-plot.html 1/1

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Original Model (76.5%)

Detector Convolutional Layers (DL)

Feature Convolutional Layers (FL)

DL + FL

mAP = 74.5%

Saved FLOPs Ratio (%)

m
A
P
 (
%
)

29

Figure 8. Object detection results on PASCAL VOC2007 testing
set. Nine spots on each curve indicate Rank9 toward Rank1 corre-
spondingly from left to right.

We demonstrate the experimental results in Figure 8.
First, one can see that if 2% mAP drop is acceptable, DAC
saves up to 29% FLOPs. Second, decreasing the decom-
position rank results in a drop of mAP, which is also ob-
served in the previous experiment. Third, compared to
“DL”, “FL” achieves a bigger FLOPs saved ratio. This is
because that there are fewer layers in “DL” and each layer
in “DL” has fewer channels than layers in “FL”. In addi-
tion, for this model, the maximum decomposition rank is 9
so when the decomposition rank is set to 9, the number of
parameters increases after decomposition. This is because
that all layers we decompose in this model have (3x3) kernel
size whose full rank is 9. The newly generated depthwise
layer with Rank9 has the same number of parameters as the
decomposed layer, while an extra pointwise layer that has
rC ×N × 1× 1 parameters is added.

Table 5 shows the comparison of the detection accuracy
on PASCAL VOC2007 Dataset. One can see that DAC

O
rig
in
al

Sa
ve
d
40
%
FL
O
Ps

Figure 9. Visualized results on PASCAL VOC2007 dataset. The first row shows the results generated using the original weights, while
the second row shows the results created using a model that saves 40% FLOPs. Red dashed rectangles are ground truths. The first two
samples are examples that the model works well after being decomposed, the third sample shows an example that DAC helps improve the
performance, while the following three samples are different kinds of errors caused by decomposition.

Table 4. Detection results on PASCAL VOC2007 testing set. All results expected original are collected using the SSD300 model decom-
posed with Rank6. “DL” indicates only Detector Convolutional Layers are decomposed and “FL” indicates only Feature Convolutional
Layers are decomposed.

Model mAP(%) aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
SSD[15](Original) 76.5 78.6 83.9 75.3 67.8 48.5 86.7 84.7 87.7 58.1 79.3 75.0 85.9 87.5 82.6 77.5 51.2 77.1 79.5 87.2 76.5
(DL) Channel[32] 76.1 77.6 83.8 75.8 66.6 45.7 86.4 84.5 87.6 58.1 78.6 74.5 86.1 87.4 82.5 77.0 50.3 76.8 79.7 87.8 75.1
(DL) Spatial[8] 76.1 77.9 83.2 75.3 67.2 46.0 86.3 84.4 86.9 58.2 78.9 74.5 85.5 87.3 82.7 76.9 51.0 76.5 79.4 87.7 75.7
(DL) DAC(Ours) 76.3 78.4 82.9 74.5 68.3 47.8 86.7 84.4 88.4 58.0 79.4 74.9 85.6 86.5 83.1 77.3 50.7 77.3 79.0 87.5 76.1
(FL) Channel[32] 62.2 70.4 69.7 63.8 52.9 38.3 75.1 79.8 72.8 42.2 73.2 38.0 65.7 76.3 69.6 64.0 38.8 66.6 53.4 75.6 57.3
(FL) Spatial[8] 63.2 73.7 69.7 64.6 52.0 39.0 75.6 79.9 77.6 42.6 73.2 39.5 70.7 76.3 71.3 65.5 37.9 67.0 53.0 77.9 56.1
(FL) DAC(Ours) 75.3 78.2 83.0 73.0 67.1 44.3 86.3 83.3 87.7 56.6 78.5 75.2 84.2 85.9 82.8 75.8 48.8 75.3 78.6 86.4 75.6
(DL+FL) Channel[32] 62.2 70.6 69.4 64.1 51.1 36.1 75.7 79.8 72.8 43.0 72.9 39.9 66.4 74.5 70.2 63.7 38.5 65.9 55.1 75.4 58.7
(DL+FL) Spatial[8] 63.1 73.8 70.3 64.1 50.8 37.8 75.3 79.8 76.9 43.0 74.3 39.8 69.7 75.8 70.9 64.5 38.6 68.9 54.1 77.9 56.2
(DL+FL) DAC(Ours) 74.8 76.4 81.1 73.1 66.0 44.6 85.9 83.1 88.1 56.5 76.8 74.0 84.3 86.1 83.1 75.5 47.7 74.1 77.5 86.1 75.7

Table 5. Object detection results on PASCAL VOC2007 Dataset.
Mean Average Precision (%)

SSD [15] (Original) 76.5
Method Saved 30% Saved 40% Saved 50%
Channel Decomp. [32] 62.2 60.0 52.4
Spatial Decomp. [8] 63.1 62.2 60.6
DAC (Ours) 74.8 71.4 60.8

achieves higher accuracy than other schemes. In Table
4, we list the details of the detection results on PASCAL
VOC2007 testing set. Comparing the results of DAC to the
original model, one can see that decomposing the model us-
ing DAC does not impact the performance of the model too
much, for all categories. The change of the accuracy hap-
pens on each category within a small range.

Figure 9 shows the visualized object detection results on
PASCAL VOC2007 testing set. From the first two sam-
ples, one can see that after being decomposed, the model
can still correctly detect objects. The locations and sizes of
the detected bounding boxes have small changes. The third
sample is an example that the original model does not detect
an object (the bottle) that is successfully detected by our de-
composed model. The fourth sample shows an extra false
positive example (an unexpected potted-plant is detected),
the fifth sample is a missing example (miss the car on the
right), and the last sample is an example that the detected
label changed (from bird to dog). Please refer to our Ap-
pendix for more visualized results.

5. Conclusion

In this paper, we propose a novel decomposition method,
namely DAC. Given a pre-trained model, DAC is able to
factorize an ordinary convolutional layer into two layers
with much fewer parameters and computes their weights by
decomposing the original weights directly. Thus, no train-
ing (or fine-tuning) or any data is needed. The experimen-
tal results on three computer vision tasks show that DAC
reduces a large number of FLOPs while maintaining high
accuracy of a pre-trained model.

We plan to evaluate the performance of DAC for deep
learning models in other fields, e.g., voice recognition, lan-
guage translation, etc. We also want to explore the possi-
bility of adapting DAC on other types of layers, e.g. 3D
convolutional layer, compared with other tensor decompo-
sition formats [9, 11]. Another research direction is to
combine low rank constraints with weight decomposition.
These constraints could be convex regularizations like nu-
clear norm and Frobenius norm, or non-convex quasi-norms
like Schatten p and TS1 [29, 28, 30].

6. Acknowledgements

We would love to express our appreciation to Jacob Nel-
son for his useful discussions.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.
4

[2] J. M. Alvarez and M. Salzmann. Compression-aware train-
ing of deep networks. In Advances in Neural Information
Processing Systems, pages 856–867, 2017. 2

[3] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017. 6

[4] F. Chollet et al. Keras. https://github.com/
fchollet/keras, 2015. 4

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.
4

[6] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-
ing very deep neural networks. 2(6), 2017. 2

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017. 1, 2

[8] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up
convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866, 2014. 2, 5, 6, 8

[9] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin.
Compression of deep convolutional neural networks for
fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015. 2, 8

[10] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.
4

[11] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky. Speeding-up convolutional neural net-
works using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014. 2, 8

[12] X. Li and M. C. Chuah. Sbgar: Semantics based group activ-
ity recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 1

[13] X. Li and M. C. Chuah. Rehar: Robust and efficient hu-
man activity recognition. In Applications of Computer Vision
(WACV), 2018 IEEE Winter Conference on. IEEE, 2018. 1

[14] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014. 4

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21–37.
Springer, 2016. 7, 8

[16] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse
neural networks through l 0 regularization. arXiv preprint
arXiv:1712.01312, 2017. 1, 2

[17] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 116–131, 2018. 1, 2

[18] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.
Pruning convolutional neural networks for resource efficient
inference. arXiv preprint arXiv:1611.06440, 2016. 1

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge. In-
ternational Journal of Computer Vision, 2015. 4

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. pages 4510–4520, 2018. 1, 2

[21] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen, and M. Alek-
sic. A quantization-friendly separable convolution for mo-
bilenets. arXiv preprint arXiv:1803.08607, 2018. 3

[22] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015. 5,
6, 7

[23] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li. Coor-
dinating filters for faster deep neural networks. In The IEEE
International Conference on Computer Vision (ICCV), 2017.
2

[24] Y. Xu, Y. Wang, A. Zhou, W. Lin, and H. Xiong. Deep neural
network compression with single and multiple level quanti-
zation. arXiv preprint arXiv:1803.03289, 2018. 1

[25] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Bi-
naryrelax: A relaxation approach for training deep neu-
ral networks with quantized weights. arXiv preprint
arXiv:1801.06313, 2018. 1

[26] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Blended
coarse gradient descent for full quantization of deep neural
networks. arXiv preprint arXiv:1808.05240, 2018. 1

[27] P. Yin, S. Zhang, Y. Qi, and J. Xin. Quantization and training
of low bit-width convolutional neural networks for object de-
tection. Journal of Computational Mathematics, 37(3):349–
360, 2019. 1

[28] S. Zhang and J. Xin. Minimization of transformed l 1
penalty: Closed form representation and iterative threshold-
ing algorithms. Communications in Mathematical Sciences,
15(2):511–537, 2017. 8

[29] S. Zhang and J. Xin. Minimization of transformed l 1
penalty: theory, difference of convex function algorithm,
and robust application in compressed sensing. Mathemati-
cal Programming, 2018. 8

[30] S. Zhang, P. Yin, and J. Xin. Transformed schatten-1 itera-
tive thresholding algorithms for low rank matrix completion.
Communications in Mathematical Sciences, 15(3):839–862,
2017. 8

[31] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile
devices, 2017. 1

[32] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very
deep convolutional networks for classification and detection.
IEEE transactions on pattern analysis and machine intelli-
gence, 38(10):1943–1955, 2016. 2, 5, 6, 8

https://github.com/fchollet/keras
https://github.com/fchollet/keras

